Geology of Nigeria

Last updated

The geology of Nigeria formed beginning in the Archean and Proterozoic eons of the Precambrian. The country forms the Nigerian Province and more than half of its surface is igneous and metamorphic crystalline basement rock from the Precambrian. Between 2.9 billion and 500 million years ago, Nigeria was affected by three major orogeny mountain-building events and related igneous intrusions. Following the Pan-African orogeny, in the Cambrian at the time that multi-cellular life proliferated, Nigeria began to experience regional sedimentation and witnessed new igneous intrusions. By the Cretaceous period of the late Mesozoic, massive sedimentation was underway in different basins, due to a large marine transgression. By the Eocene, in the Cenozoic, the region returned to terrestrial conditions.

Contents

Nigeria has tremendous oil and natural gas resources housed in its thick sedimentary basins, as well as reserves of gold, lead, zinc, tantalite, columbite, coal and tin.

Stratigraphy, Tectonics & Geologic History

The oldest Precambrian rocks in Nigeria likely formed during the Archean or the Paleoproterozoic, forming the Beninian gneiss, in the Benin-Nigeria Orogen, formed during the Proterozoic Pan-African orogeny. The crystalline basement rock of the country is grouped as the Nigerian Province, a southern continuation of the central Hoggar reactivated basement.

The ancient rocks of the Nigerian Province are split up by thrust and shear zones. The Migmatite-Gneiss Complex covers half of Nigeria's surface area and encompasses Archean gray gneisses, with tonalite and granodiorite consistencies. Within this complex are occurrences of schist, migmatite, garnet, sillimanite, kyanite and staurolite, which together indicate high-grade metamorphism up to the level of amphibolite on the sequence of metamorphic facies. Granites are associated with charnockite bodies and granulite facies metamorphism.

The Migmatite-Gneiss Complex differs in the Ibadan area, in the southwest. Banded gneiss, schist and quartzite formed from the metamorphism of greywacke, shale and interbedded sandstones. Some amphibolite layers record the metamorphosed remains of a tholeiitic magma series. The early folding and metamorphism in the Ibadan area was followed by the emplacement of aplite schist and microgranodiorite dikes during the Liberian orogeny 2.75 billion years ago. More intense deformation followed 2.2 billion years ago during the Eburnean orogeny.

Metazquartzites in the Ibadan area, likely from the Proterozoic, are overlain by pelite schist, intruded by mafic sills rich in magnesium. They are overlain by Neoproterozoic pelites, including phyllite and both muscovite and biotite schists, as well as quartzites that form strike ridges in several parts of Nigeria.

Younger metasediments are found in the southwest and northwest in synclinorial schist belts. Compared to the surrounding migmatite-gneiss complexes, these low-grade metamorphic rocks have isoclinal folding and steeply dipping foliation. They have faulted and sheared boundaries with the surrounding rock.

Geologists have interpreted these schist belts the remains of paleo-rift systems. The Pan-African orogeny in the late Proterozoic affected all of the Archean and Paleoproterozoic rocks in the region. Continent-continent collision and eastward subduction affected the southern Trans-Saharan mobile belt and emplaced granitoids throughout the Nigerian Province. In Nigeria, Pan-African orogeny related granite, syenite and diorite intrusions formed between 700 and 500 million years ago and are known as the Older Granites. [1]

Paleozoic (541-251 million years ago)

In the Cambrian, at the beginning of the Paleozoic, volcanic debris filled molasse grabens, forming dacite and shoshonite, as the Older Granites continued to emplace. In some cases, granite intrusions formed large batholiths and charnockite. The end of the Pan-African orogeny was also accompanied by the intrusion of basalt and dolerite dikes. [2]

Mesozoic (251-66 million years ago)

In the Mesozoic, during the Jurassic, ring complexes known as the Younger Granites intruded Neoproterozoic and Paleozoic basement rocks in the Jos Plateau, as well as in the Air region in Niger. The Younger Granites are primarily alkali-feldspar granites, although the ring complexes also include rhyolite, gabbro and syenite. The ring dikes tend to be highly mineralized and enriched in niobium and tin.

Large sedimentary basins formed in southern Nigeria, divided by the Okitipupa Ridge. The basins did not begin to fill with sediment until the Albian age of the Cretaceous. In the southeast, poorly bedded sandy shale alternates with layers of sandstone and sandy limestone, containing ammonite, radiolarian, echinoid and gastropod fossils. Subsequently, some of these sedimentary rock layers experienced lead and zinc mineralization.

The arkose sandstone, limestone and shale of the 600 meter thick Odukpani Formation formed during the Cenomanian until the early Turonian, in the vicinity of modern-day Calabar. Fish teeth, ammonites and echinoids date the Eze-Aku Formation to the Turonian, while the blue-gray shales and marl limestone of the Awgu Formation dates to the Coniacian. During the Santonian age of the Cretaceous, sea levels dropped. However, by the Campanian and the Maastrichtian, the Nkporo Formation records shale, mudstone, limestone and sandstones formed in an offshore environment. In other parts of Nigeria, the Owelli Sandstone, Enugu Shale and Asata Shale formed around the same time in shallow water environments. Other formations of similar age include the ammonite-bearing coals of Mamu Formation and the Nsukka Formation, both from the Maastrichtian.

The Maastrichtian age brought a large marine transgression to southwest Nigeria, depositing the Abeokuta Formation. The Iullemeden Basin, also known as the Sokoto Basin spans Mali, western Niger, northwest Nigeria and northern Benin and began accumulating sediments in the Jurassic, followed by the Maastrichtian Rima Group, which records a brackish environment. Approximately one-tenth of the Chad Basin is situated in Nigeria. Albian Bima sandstone lie unconformably atop Precambrian basement rock, followed by the Turonian limestone and shale sequences of the Gongila Formation. Marine shales of the Fika Formation formed during the Senonian. The Maastrichtian brought a shift to an estuary environment, leading to the deposition of the Gombe Sandstones, which are intercalated with ironstone, siltstone and shales. [3]

Cenozoic (66 million years ago-present)

High sea levels continued into the early Cenozoic. In the west, the Akinbo Formation and Ewekoro Formation both deposited in the Paleocene, while the Ino Formation took shape atop the Nsukka in the east, with layers of thick, clay shale. The Sokoto Group in the Iullemeden Basin contains marine sediments. However, by the Eocene, sea levels retreated and afterward Nigeria mainly experienced terrestrial sedimentation.

Around the end of the Cretaceous and the start of the Cenozoic, the sedimentary rocks in the Chad Basin were folded into anticlines and synclines. Erosion created an unconformity with younger rocks. Terrestrial sediments built up in the Paleocene Kerri Kerri Formation, followed by Pliocene lake sediments of the Chad Formation. [4]

Hydrogeology

Unconsolidated sediments 15 to 30 meters thick line the Niger and Benue rivers and are recharged from rainwater, along with the near surface, shallow aquifers of the Niger Delta Basin and the partially consolidated Benin Formation. In central and eastern Nigeria, regional occurrences of volcanic rock contain groundwater in fractures, less than five meters deep.

Most of Nigeria's large sedimentary basins have intergranular flow, rainwater recharge and few water quality issues. Within the Chad Basin, the Chad Formation is unconfined in some locations, with artesian flow from some deeper layers and a water table depth of 10 to 15 meters. The Gombe Sandstone is comparatively low permeability and the deeper Kerri-Kerri Formation remains poorly studied. The water table in the Sokoto Group varies widely between 20 and 100 meters deep, unconfined near the surface and confined in lower layers of the Gwandu Formation. Within the Sokoto Group, the Wurno Formation has moderate yields and limited recharge, while the Gundumi Formation conglomerates are good aquifers, with artesian conditions, bounded by deeper clay layers. Other sedimentary aquifers include the Nupe Basin, Upper Benue Basin and Lower Benue Basin.

Precambrian crystalline basement rock supports regional aquifers in weathered zones, 10 to 25 meters thick, as well as in fractures. In particular, metasedimentary rocks often weather to be clay rich, forming aquitards. [5]

Natural resource geology

Nigeria has extensive natural resources and is the largest crude oil producer in Africa and 20 billion barrels of reserves. As such, petroleum is central to economy of Nigeria, producing 80 percent of government revenues and 95 percent of export earnings. Additionally, Nigeria has 2.6 trillion cubic meters of natural gas and a high overall gas to oil ratio. Seventy percent of both oil and gas resources are onshore.

The country also has extensive mineral deposits, although most are under-exploited. According to the Geological Survey of Nigeria Agency, Nigeria has some 34 known major mineral deposits across the country. Exploration of solid minerals like tin, niobium, lead, zinc and gold, goes back for more than 90 years, but there has been a world-wide scale production of tin and niobium only. [6]

Gold mines were active before World War II, extracting from crystalline basement rock in the northwest, but a combination of low gold prices and legal turmoil ended the industry, recently the demand for gold has gone up due its high prices and Gold can be found in commercial quantity in states like Osun, Zamfara and Cross River states in Nigeria. The Younger Granites of the Jos Plateau contain significant tin deposits, mined since before European colonization. However, in recent years, tin mining has been significantly curtailed by flooding in the mines and low tin prices, as well as water pollution from the mines. Tantalite and columbite are both associated with the tin ore in the plateau.

The states of Anambra, Benue, Plateau and Taraba have small-scale lead and zinc mining, from deposits that also have large quantities of cadmium, arsenic and antimony. Barite veins commonly contain lead and zinc in Plateau State and other parts of eastern Nigeria. Kwara State has iron ore in Agbaja Plateau and Itakpe Hills.

Nigeria also has other resources useful for energy and construction, including a poorly understood lignite belt in the south, kaolin, gypsum and feldspar. Coal mining provided much of the country's energy between 1915 and 1960, although the industry has been in a long-running decline, now providing energy only for small-scale kilns and smelters. [4]

Related Research Articles

Gascoyne Complex Terrane of Proterozoic granite and metamorphic rock in Western Australia

The Gascoyne Complex is a terrane of Proterozoic granite and metamorphic rock in the central-western part of Western Australia. The complex outcrops at the exposed western end of the Capricorn Orogen, a 1,000 km-long arcuate belt of folded, faulted and metamorphosed rocks between two Archean cratons; the Pilbara craton to the north and the Yilgarn craton to the south. The Gascoyne Complex is thought to record the collision of these two different Archean continental fragments during the Capricorn Orogeny at 1830–1780 Ma.

Geology of Antarctica Geologic composition of Antarctica

The geology of Antarctica covers the geological development of the continent through the Archean, Proterozoic and Phanerozoic eons.

Geology of the Democratic Republic of the Congo

The geology of the Democratic Republic of the Congo is extremely old, on the order of several billion years for many rocks. The country spans the Congo Craton: a stable section of ancient continental crust, deformed and influenced by several different mountain building orogeny events, sedimentation, volcanism and the geologically recent effects of the East Africa Rift System in the east. The country's complicated tectonic past have yielded large deposits of gold, diamonds, coltan and other valuable minerals.

The geology of Cameroon is almost universally Precambrian metamorphic and igneous basement rock, formed in the Archean as part of the Congo Craton and the Central African Mobile Zone and covered in laterite, recent sediments and soils. Some parts of the country have sequences of sedimentary rocks from the Paleozoic, Mesozoic and Cenozoic as well as volcanic rock produced by the 1600 kilometer Cameroon Volcanic Line, which includes the still-active Mount Cameroon. The country is notable for gold, diamonds and some onshore and offshore oil and gas.

Geology of Ivory Coast

The geology of Ivory Coast is almost entirely extremely ancient metamorphic and igneous crystalline basement rock between 2.1 and more than 3.5 billion years old, comprising part of the stable continental crust of the West African Craton. Near the surface, these ancient rocks have weathered into sediments and soils 20 to 45 meters thick on average, which holds much of Ivory Coast's groundwater. More recent sedimentary rocks are found along the coast. The country has extensive mineral resources such as gold, diamonds, nickel and bauxite as well as offshore oil and gas.

The geology of Malawi formed on extremely ancient crystalline basement rock, which was metamorphosed and intruded by igneous rocks during several orogeny mountain building events in the past one billion years. The rocks of the Karoo Supergroup and newer sedimentary units deposited across much of Malawi in the last 251 million years, in connection with a large rift basin on the supercontinent Gondwana and the more recent rifting that has created the East African Rift, which holds Lake Malawi. The country has extensive mineral reserves, many of them poorly understand or not exploited, including coal, vermiculite, rare earth elements and bauxite.

The geology of Mauritania is built on more than two billion year old Archean crystalline basement rock in the Reguibat Shield of the West African Craton, a section of ancient and stable continental crust. Mobile belts and the large Taoudeni Basin formed and filled with sediments in the connection with the Pan-African orogeny mountain building event 600 million years ago and a subsequent orogeny created the Mauritanide Belt. In the last 251 million years, Mauritania has accumulated additional sedimentary rocks during periods of marine transgression and sea level retreat. The arid country is 50% covered in sand dunes and has extensive mineral resources, although iron plays the most important role in the economy.

The geology of Mozambique is primarily extremely old Precambrian metamorphic and igneous crystalline basement rock, formed in the Archean and Proterozoic, in some cases more than two billion years ago. Mozambique contains greenstone belts and spans the Zimbabwe Craton, a section of ancient stable crust. The region was impacted by major tectonic events, such as the mountain building Irumide orogeny, Pan-African orogeny and the Snowball Earth glaciation. Large basins that formed in the last half-billion years have filled with extensive continental and marine sedimentary rocks, including rocks of the extensive Karoo Supergroup which exist across Southern Africa. In some cases these units are capped by volcanic rocks. As a result of its complex and ancient geology, Mozambique has deposits of iron, coal, gold, mineral sands, bauxite, copper and other natural resources.

The geology of Niger comprises very ancient igneous and metamorphic crystalline basement rocks in the west, more than 2.2 billion years old formed in the late Archean and Proterozoic eons of the Precambrian. The Volta Basin, Air Massif and the Iullemeden Basin began to form in the Neoproterozoic and Paleozoic, along with numerous ring complexes, as the region experienced events such as glaciation and the Pan-African orogeny. Today, Niger has extensive mineral resources due to complex mineralization and laterite weathering including uranium, molybdenum, iron, coal, silver, nickel, cobalt and other resources.

Geology of Tanzania

The geology of Tanzania began to form in the Precambrian, in the Archean and Proterozoic eons, in some cases more than 2.5 billion years ago. Igneous and metamorphic crystalline basement rock forms the Archean Tanzania Craton, which is surrounded by the Proterozoic Ubendian belt, Mozambique Belt and Karagwe-Ankole Belt. The region experienced downwarping of the crust during the Paleozoic and Mesozoic, as the massive Karoo Supergroup deposited. Within the past 100 million years, Tanzania has experienced marine sedimentary rock deposition along the coast and rift formation inland, which has produced large rift lakes. Tanzania has extensive, but poorly explored and exploited natural resources, including coal, gold, diamonds, graphite and clays.

The geology of Uganda extends back to the Archean and Proterozoic eons of the Precambrian, and much of the country is underlain by gneiss, argillite and other metamorphic rocks that are sometimes over 2.5 billion years old. Sedimentary rocks and new igneous and metamorphic units formed throughout the Proterozoic and the region was partially affected by the Pan-African orogeny and Snowball Earth events. Through the Mesozoic and Cenozoic, ancient basement rock has weathered into water-bearing saprolite and the region has experienced periods of volcanism and rift valley formation. The East Africa Rift gives rise to thick, more geologically recent sediment sequences and the country's numerous lakes. Uganda has extensive natural resources, particularly gold.

Geology of Zambia

The geological history of Zambia begins in the Proterozoic eon of the Precambrian. The igneous and metamorphic basement rocks tend to be highly metamorphosed and may have formed earlier in the Archean, but heat and pressure has destroyed evidence of earlier conditions. Major sedimentary and metamorphic groups formed in the mid-Proterozoic, followed by a series of glaciations in the Neoproterozoic and much of the Paleozoic which deposited glacial conglomerate as well as other sediments to form the Katanga Supergroup and rift-related Karoo Supergroup. Basalt eruptions blanketed the Karoo Supergroup in the Mesozoic and Zambia shifted to coal and sandstone formation. Geologically recent windblown sands from the Kalahari Desert and alluvial deposits near rivers play an important role in the modern surficial geology of Zambia. The country has extensive natural resources, particularly copper, but also cobalt, emeralds, other gemstones, uranium and coal.

The geology of Morocco formed beginning up to two billion years ago, in the Paleoproterozoic and potentially even earlier. It was affected by the Pan-African orogeny, although the later Hercynian orogeny produced fewer changes and left the Maseta Domain, a large area of remnant Paleozoic massifs. During the Paleozoic, extensive sedimentary deposits preserved marine fossils. Throughout the Mesozoic, the rifting apart of Pangaea to form the Atlantic Ocean created basins and fault blocks, which were blanketed in terrestrial and marine sediments—particularly as a major marine transgression flooded much of the region. In the Cenozoic, a microcontinent covered in sedimentary rocks from the Triassic and Cretaceous collided with northern Morocco, forming the Rif region. Morocco has extensive phosphate and salt reserves, as well as resources such as lead, zinc, copper and silver.

Geology of Senegal

The geology of Senegal formed beginning more than two billion years ago. The Archean greenschist Birimian rocks common throughout West Africa are the oldest in the country, intruded by Proterozoic granites. Basins formed in the interior during the Paleozoic and filled with sedimentary rocks, including tillite from a glaciation. With the rifting apart of the supercontinent Pangaea in the Mesozoic, the large Senegal Basin filled with thick sequences of marine and terrestrial sediments. Sea levels declined in the Eocene forming large phosphate deposits. Senegal is blanketed in thick layers of terrestrial sediments formed in the Quaternary. The country has extensive natural resources, including gold, diamonds, and iron.

Geology of Sudan

The geology of Sudan formed primarily in the Precambrian, as igneous and metamorphic crystalline basement rock. Ancient terranes and inliers were intruded with granites, granitoids as well as volcanic rocks. Units of all types were deformed, reactivated, intruded and metamorphosed during the Proterozoic Pan-African orogeny. Dramatic sheet flow erosion prevented almost any sedimentary rocks from forming during the Paleozoic and Mesozoic. From the Mesozoic into the Cenozoic the formation of the Red Sea depression and complex faulting led to massive sediment deposition in some locations and regional volcanism. Sudan has petroleum, chromite, salt, gold, limestone and other natural resources.

Geology of Sweden

The geology of Sweden is the regional study of rocks, minerals, tectonics, natural resources and groundwater in the country. The oldest rocks in Sweden date to more than 2.5 billion years ago in the Precambrian. Complex orogeny mountain building events and other tectonic occurrences built up extensive metamorphic crystalline basement rock that often contains valuable metal deposits throughout much of the country. Metamorphism continued into the Paleozoic after the Snowball Earth glaciation as the continent Baltica collided with an island arc and then the continent Laurentia. Sedimentary rocks are most common in southern Sweden with thick sequences from the last 250 million years underlying Malmö and older marine sedimentary rocks forming the surface of Gotland.

The geology of Alberta encompasses parts of the Canadian Rockies and thick sedimentary sequences, bearing coal, oil and natural gas, atop complex Precambrian crystalline basement rock.

The geology of Colorado was assembled from island arcs accreted onto the edge of the ancient Wyoming Craton. The Sonoma orogeny uplifted the ancestral Rocky Mountains in parallel with the diversification of multicellular life. Shallow seas covered the regions, followed by the uplift current Rocky Mountains and intense volcanic activity. Colorado has thick sedimentary sequences with oil, gas and coal deposits, as well as base metals and other minerals.

The geology of South Korea includes rocks dating to the Archean and two large massifs of metamorphic rock as the crystalline basement, overlain by thick sedimentary sequences, younger metamorphic rocks and volcanic deposits. Although extent is small, Geology is diverse, and There are diverse rocks which is formed during long-time from Precambrian to Cenozoic Era in Korea Peninsula.

Geology of Latvia

Geology of Latvia includes an ancient Archean and Proterozoic crystalline basement overlain with Neoproterozoic volcanic rocks and numerous sedimentary rock sequences from the Paleozoic, some from the Mesozoic and many from the recent Quaternary past. Latvia is a country in the Baltic region of Northern Europe.

References

  1. Schlüter, Thomas (2008). Geological Atlas of Africa. Springer. pp. 196–197.
  2. Schlüter 2008, p. 196.
  3. Schlüter 2008, pp. 197–198.
  4. 1 2 Schlüter 2008, p. 198.
  5. "Hydrogeology of Nigeria". British Geological Survey.
  6. Obaje, Nuhu George (2009). Geology and Mineral Resources of Nigeria . Springer. p.  117.