Glossina fuscipes | |
---|---|
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Diptera |
Family: | Glossinidae |
Genus: | Glossina |
Species: | G. fuscipes |
Binomial name | |
Glossina fuscipes Newstead, 1910 | |
Subspecies | |
Synonyms | |
|
Glossina fuscipes is a riverine fly species in the genus Glossina , which are commonly known as tsetse flies. [1] Typically found in sub-Saharan Africa [2] but with a small Arabian range, [3] G. fuscipes is a regional vector of African trypanosomiasis, commonly known as sleeping sickness, that causes significant rates of morbidity and mortality among humans and livestock. [4] Consequently, the species is among several being targeted by researchers and veterinary and public health authorities for population control as a method for controlling the disease. [5] [6] [7] [8]
G. fuscipes are often brown or grey-brown in color. Their bodies tend to have varied dark and light patches, effectively camouflaging them on surfaces such as bark, rock, or soil. At rest, G. fuscipes appear slim as they fold their wings on their backs so that one lies on top of the other. This is in contrast to houseflies and blowflies whose wings project outward at an angle while resting on their backs. Following a blood meal, the insect's abdomen will appear large, rounded and red. [9]
When the male G. fuscipes is examined from the ventral side, a rounded structure named the hypopygium can be seen at the posterior end of the abdomen. Immediately in front of the hypopygium is a plate bearing dark hairs called hectors. Both the hypopygium and the hectors help distinguish male from females and serve to grasp onto the end of the female abdomen during mating. As copulation commences, the hypopygium unfolds to uncover superior and inferior claspers as well as the aedeagus. [9]
The end of the female abdomen lacks any significant structures that would be the counterpart of the male hypopygium and hectors; however, females display a vulva, which can exhibit several small plates that aid in species identification. [9]
In a few hours, the sperm move from the spermatophore into the spermatheca, where they remain active for the remainder of the female's life. Eggs are fertilized immediately as they enter the uterus by sperm from the spermatheca that come into contact and penetrate the anterior portion of the egg. The fertilized egg remains in the uterus for about four days as the instar larva begins to develop. [9]
Once she has mated, a female can produce larvae for the remainder of her life. At about 25 °C, a female fly will produce mature larva every 9–10 days with the exception of the first, which may take up to 18–20 days. Lower temperatures result in a lower rate of breeding whereas higher temperatures increase the rate of breeding. Temperatures either too high or too low may cease breeding altogether. [9]
The G. fuscipes larva in passes through three instars as it grows up to when the fully grown larva is dropped by a female fly. The larva has a mouth at the anterior end and two spiracles at the posterior end. Rather unusually, the larva spends most of its time and does all its feeding within the mother's body.[ citation needed ]
Apart from food stored in the egg, the food supply for the three larval instar stages comes from the mother's milk gland. The milky secretions of this gland are expelled out of the gland duct at the head end of the larva. The larva sucks up the milky secretion and passes it directly to the midgut where it is slowly digested and assimilated.[ citation needed ]
For air supply, the larva depends on air entering the vulva of the female. The air must pass into the female's posterior spiracles or polypneustic lobes to reach the larva. [9]
If a larva fails to reach its full size, it will be prematurely expelled from the uterus. The aborted larva dies. Abortions could be due to the mother fly not obtaining enough food or also when carelessly handled or exposed to insecticide. Eggs are subjected to abortion for the same reasons. [9]
The pupa is a dark brown, shorter than the larva that produced it, and rounded with polypneustic lobes at the posterior end. The lobes are distinctively shaped and can help to distinguish the G. fuscipes pupa from that of other flies. The pupa also has a hard case on its outside called the puparium.[ citation needed ]
The pupal stage lasts about four to five weeks according to temperature. Higher temperatures shorten the pupal period. In contrast, lower temperatures lengthen the pupal period to more than 50 days in certain climates. However, temperature extremes will cause death. [9]
When ready to emerge, the young adult fly expands its ptilinum to burst open puparium's end. Out of the fresh hole and surrounding soil, the adult emerges by using the ptilinum, struggling to the top of the soil and into open air. At this stage, the adult's body is very soft while its wings are small and crumpled. After a few urinations, the wings will expand towards their proper size. From the time between the emergence of the fly and its first meal, the adult is called a teneral fly. After the first blood meal has been taken, the fly is then termed a non-teneral fly. [9]
During mating, males settle on the back of the female. Claspers at the posterior end of the male abdomen unfold in order to grip the end of the female abdomen. This mating position may be maintained for an hour or two before the duo parts.[ citation needed ]
Females typically mate a young age, either before or around the same time of their first blood meals. Females usually mate only once in their lives though it is possible mate more than once, whereas males tend to mate several times. Older males are more likely to mate successfully than very young males.[ citation needed ]
During mating, the aedeagus is inserted into the vulva and reaches into the uterus as far as the spermatheca exit. A sizable ball of sperm is deposited there in the form of a spermatophore. At the conclusion of mating, the male releases his grip on the female before flying away. [9]
G. fuscipes ranges across a vast region in Central and Eastern Africa, spanning from Cameroon and Gabon in the west to Kenya and Ethiopia in the east, and from Chad and Sudan in the north to Angola, the Democratic Republic of the Congo and the United Republic of Tanzania in the south. [2]
A subpopulation of G. f. fuscipes exists in the very southern part of the Arabian Peninsula. G. f. f. and G. m. submorsitans are the only subspecies of Glossina which survive outside Africa, including in southwestern Saudi Arabia. [3] They prefer high-humidity areas, namely biomes such as mangrove swamps, rain forests, lake shores, and gallery forests along rivers. [9]
The genus Glossina is regarded as an isolated genus and it is usually classified into its own family Glossinidae. The genus is further divided into three subgenera, Morsitans, Fusca, and Palpalis, the latter of which being the subgenus to which G. fuscipes belongs. The species is further broken down into subspecies G. f. fuscipes , G. f. martinii , and G. f. quanzensis . [9]
G. fuscipes feed on vertebrate blood and have been traditionally described as strictly hematophagous. Glucose sugars are not a metabolic requirement for this species because it uses a proline-alanine shuttle system for the distribution of energy. Instead, triglycerides are used for storage in fly body fat and milk secretions. However, researchers have conducted laboratory experiments and a field study that show G. fuscipes are able to feed on sugar water in the lab and wild flies contain sugar residues. Although continuous feeding with high sugar concentrations appeared to be toxic, sugar given either occasionally or at low concentrations did not affect mortality and fecundity. [10] [9]
G. fuscipes adults and pupae are a food source for a variety of predators including vertebrates and arthropods. However, no insectivorous species is known to solely feed on G. fuscipes or tsetse flies in general. Thus, a reduction in insectivorous birds during general tsetse fly control campaigns could be attributed to the simultaneous insecticide-related removal of other insect species than decreases in tsetse flies themselves. [11]
Some trypanosome species, transmitted by G. fuscipes and other tsetse fly species, cause the infectious disease trypanosomiasis. In humans, G. fuscipes trypanosomiasis is also known as sleeping sickness. In animals, the disease may be known as nagana or surra according to the animal species infected as well as the trypanosome species involved. Nagana typically refers to the disease specifically in cattle and horses; however, it is commonly used to describe any type of animal trypanosomiasis. [12]
G. fuscipes, alongside other tsetse flies, are prominent biological vectors of protozoan parasites belonging to the genus Trypanosoma known to cause the namesake diseases in various vertebrate species including humans, antelopes, bovine cattle, camels, horses, sheep, goats, and pigs. The parasites are transmitted to humans via bites from G. fuscipes, which have acquired their infection from other human beings or animals harboring human-pathogenic parasites. [12]
The table below summarizes this information for the G. fuscipes species; however, the diseases listed below may be transferred by other tsetse fly species in addition to G. fuscipes.
Disease | Species affected | Trypanosoma agents | Distribution |
---|---|---|---|
Sleeping sickness — acute form | humans | T. brucei rhodesiense | Eastern Africa |
Nagana — acute form | antelope cattle camels horses | T. brucei brucei | Africa |
Nagana — acute form | domestic pigs cattle camels horses | T. simiae | Africa |
Surra — chronic form | domestic pigs —(Phacochoerus aethiopicus) forest hogs —( Hylochoerus spp.) | T. suis | Africa |
The containment of sleeping sickness and nagana would be of great benefit to rural communities in sub-Saharan Africa, alleviating poverty and improving food security, thus efforts are undertaken in rein in local populations of G. fuscipes via methods such as pesticide campaigns and trapping. [6] [8] [13]
G. fuscipes flies rely on the obligate symbiont bacterial genus Wigglesworthia to supplement their diets with nutrients essential for fecundity. [14] The adult immune system relies similarly on Wigglesworthia for activation and development. [15] A secondary, facultative symbiont is the genus Sodalis , which is present in tsetse populations considered to play a role in the ability to transmit trypanosomes. [16] Finally, the third symbiont is the genus Wolbachia , transovarially transmitted between generations. To enhance transmission and survival, Wolbachia has evolved mechanisms to alter host reproduction. [17]
Using both culture-dependent and independent methods, it was shown that Kenyan populations of the subspecies G. f. fuscipes harbor diverse range of bacteria. Of the flies tested, bacteria were isolated from 72% of the sample population with 23 bacterial species identified. Of these, the Bacillota phylum constituted 16 species, seven of which belong to the genus Bacillus . [18]
African trypanosomiasis is an insect-borne parasitic infection of humans and other animals.
Tsetse are large, biting flies that inhabit much of tropical Africa. Tsetse flies include all the species in the genus Glossina, which are placed in their own family, Glossinidae. The tsetse is an obligate parasite, which lives by feeding on the blood of vertebrate animals. Tsetse has been extensively studied because of their role in transmitting disease. They have pronounced economic and public health impacts in sub-Saharan Africa as the biological vectors of trypanosomes, causing human and animal trypanosomiasis.
Trypanosomiasis or trypanosomosis is the name of several diseases in vertebrates caused by parasitic protozoan trypanosomes of the genus Trypanosoma. In humans this includes African trypanosomiasis and Chagas disease. A number of other diseases occur in other animals.
The sterile insect technique (SIT) is a method of biological insect control, whereby overwhelming numbers of sterile insects are released into the wild. The released insects are preferably male, as this is more cost-effective and the females may in some situations cause damage by laying eggs in the crop, or, in the case of mosquitoes, taking blood from humans. The sterile males compete with fertile males to mate with the females. Females that mate with a sterile male produce no offspring, thus reducing the next generation's population. Sterile insects are not self-replicating and, therefore, cannot become established in the environment. Repeated release of sterile males over low population densities can further reduce and in cases of isolation eliminate pest populations, although cost-effective control with dense target populations is subjected to population suppression prior to the release of the sterile males.
Trypanosoma is a genus of kinetoplastids, a monophyletic group of unicellular parasitic flagellate protozoa. Trypanosoma is part of the phylum Euglenozoa. The name is derived from the Greek trypano- (borer) and soma (body) because of their corkscrew-like motion. Most trypanosomes are heteroxenous and most are transmitted via a vector. The majority of species are transmitted by blood-feeding invertebrates, but there are different mechanisms among the varying species. Trypanosoma equiperdum is spread between horses and other equine species by sexual contact. They are generally found in the intestine of their invertebrate host, but normally occupy the bloodstream or an intracellular environment in the vertebrate host.
Trypanosoma brucei is a species of parasitic kinetoplastid belonging to the genus Trypanosoma that is present in sub-Saharan Africa. Unlike other protozoan parasites that normally infect blood and tissue cells, it is exclusively extracellular and inhabits the blood plasma and body fluids. It causes deadly vector-borne diseases: African trypanosomiasis or sleeping sickness in humans, and animal trypanosomiasis or nagana in cattle and horses. It is a species complex grouped into three subspecies: T. b. brucei, T. b. gambiense and T. b. rhodesiense. The first is a parasite of non-human mammals and causes nagana, while the latter two are zoonotic infecting both humans and animals and cause African trypanosomiasis.
Major-General Sir David Bruce, was a Scottish pathologist and microbiologist who made some of the key contributions in tropical medicine. In 1887, he discovered a bacterium, now called Brucella, that caused what was known as Malta fever. In 1894, he discovered a protozoan parasite, named Trypanosoma brucei, as the causative pathogen of nagana.
Animal trypanosomiasis, also known as nagana and nagana pest, or sleeping sickness, is a disease of vertebrates. The disease is caused by trypanosomes of several species in the genus Trypanosoma such as T. brucei. T. vivax causes nagana mainly in West Africa, although it has spread to South America. The trypanosomes infect the blood of the vertebrate host, causing fever, weakness, and lethargy, which lead to weight loss and anemia; in some animals the disease is fatal unless treated. The trypanosomes are transmitted by tsetse flies.
Wigglesworthia glossinidia is a species of gram-negative bacteria that is a bacterial endosymbiont of the tsetse fly. Because of this relationship, Wigglesworthia has lost a large part of its genome, leaving it with one of the smallest genomes of any living organism, consisting of a single chromosome of 700,000 bp and a plasmid of 5,200. Together with Buchnera aphidicola, Wigglesworthia has been the subject of genetic research into the minimal genome necessary for any living organism.
Paratransgenesis is a technique that attempts to eliminate a pathogen from vector populations through transgenesis of a symbiont of the vector. The goal of this technique is to control vector-borne diseases. The first step is to identify proteins that prevent the vector species from transmitting the pathogen. The genes coding for these proteins are then introduced into the symbiont, so that they can be expressed in the vector. The final step in the strategy is to introduce these transgenic symbionts into vector populations in the wild. One use of this technique is to prevent mortality for humans from insect-borne diseases. Preventive methods and current controls against vector-borne diseases depend on insecticides, even though some mosquito breeds may be resistant to them. There are other ways to fully eliminate them. “Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit.” The acidic bacteria Asaia symbionts are beneficial in the normal development of mosquito larvae; however, it is unknown what Asais symbionts do to adult mosquitoes.
Wendy Gibson is Professor of Protozoology at University of Bristol, specialising in trypanosomes and molecular parasitology.
Hytrosaviridae is a family of double-stranded DNA viruses that infect insects. The name is derived from Hytrosa, sigla from the Greek Hypertrophia for 'hypertrophy' and 'sialoadenitis' for 'salivary gland inflammation.'
Sodalis glossinidius is a species of bacteria, the type and only species of its genus. It is a microaerophilic secondary endosymbiont of the tsetse fly. Strain M1T is the type strain. Sodalis glossinidius is the only gammaproteobacterial insect symbiont to be cultured and thus amenable to genetic modification, suggesting that it could be used as part of a control strategy by vectoring antitrypanosome genes. The organism may increase the susceptibility of tsetse flies to trypanosomes.
Sodalis is a genus of bacteria within the family Pectobacteriaceae. This genus contains several insect endosymbionts and also a free-living group. It is studied due to its potential use in the biological control of the tsetse fly. Sodalis is an important model for evolutionary biologists because of its nascent endosymbiosis with insects.
Many species of flies of the two-winged type, Order Diptera, such as mosquitoes, horse-flies, blow-flies and warble-flies, cause direct parasitic disease to domestic animals, and transmit organisms that cause diseases. These infestations and infections cause distress to companion animals, and in livestock industry the financial costs of these diseases are high. These problems occur wherever domestic animals are reared. This article provides an overview of parasitic flies from a veterinary perspective, with emphasis on the disease-causing relationships between these flies and their host animals. The article is organized following the taxonomic hierarchy of these flies in the phylum Arthropoda, order Insecta. Families and genera of dipteran flies are emphasized rather than many individual species. Disease caused by the feeding activity of the flies is described here under parasitic disease. Disease caused by small pathogenic organisms that pass from the flies to domestic animals is described here under transmitted organisms; prominent examples are provided from the many species.
Vertical transmission of symbionts is the transfer of a microbial symbiont from the parent directly to the offspring. Many metazoan species carry symbiotic bacteria which play a mutualistic, commensal, or parasitic role. A symbiont is acquired by a host via horizontal, vertical, or mixed transmission.
Glossina morsitans is a species of tsetse fly. It is one of the major vectors of Trypanosoma brucei rhodesiense in African savannas.
The Sleeping Sickness Commission was a medical project established by the British Royal Society to investigate the outbreak of African sleeping sickness or African trypanosomiasis in Africa at the turn of the 20th century. The outbreak of the disease started in 1900 in Uganda, which was at the time a protectorate of the British Empire. The initial team in 1902 consisted of Aldo Castellani and George Carmichael Low, both from the London School of Hygiene and Tropical Medicine, and Cuthbert Christy, a medical officer on duty in Bombay, India. From 1903, David Bruce of the Royal Army Medical Corps and David Nunes Nabarro of the University College Hospital took over the leadership. The commission established that species of blood protozoan called Trypanosoma brucei, named after Bruce, was the causative parasite of sleeping sickness.
Fatma Serap Aksoy is a Turkish–American medical entomologist.
Alan Christoffels is a bioinformatics scientist, academic, and an author. He is Professor of Bioinformatics, and the director of the South African National Bioinformatics Institute at the University of the Western Cape. He has been serving as a senior advisor to the Africa Centres for Disease Control and Prevention Pathogen genomics & Partnerships and DSI/NRF Research Chair in Bioinformatics and Public Health Genomics.