Granofilosea

Last updated

Granofilosea
Clathrulina elegans - - Print - Iconographia Zoologica - Special Collections University of Amsterdam - UBAINV0274 113 04 0030.tif
Clathrulina elegans
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Phylum: Cercozoa
Subphylum: Reticulofilosa
Class: Granofilosea
Cavalier-Smith & Bass 2009 [1]
Orders

Granofilosea is a class of cercozoan protists in the subphylum Reticulofilosa. [2] Out of the three groups that were traditionally considered heliozoans: the heliomonads, gymnosphaerids and desmothoracids, the latter were recently grouped into this new class.

Contents

Phylogeny and taxonomy

Phylogeny

The following cladogram shows the results of a 2011 phylogenetic analysis: [1]

Monadofilosa

Granofilosea

novel clade Gran-5

Desmothoracida

novel clade Gran-4

novel clades Gran-2 & 3

Cryptofilida

novel clade Gran-1

Nanofilidae

novel clade Gran-6

Mesofilidae

Leucodictyida

Limnofilida

Chlorarachnea

Taxonomy

Related Research Articles

<span class="mw-page-title-main">Desmothoracid</span> Family of single-celled organisms

Order Desmothoracida, the desmothoracids, are a group of heliozoan protists, usually sessile and found in freshwater environments. The adult is a spherical cell around 10-20 μm in diameter surrounded by a perforated organic lorica, or shell, with many radial pseudopods projecting through the holes to capture food. These are supported by small bundles of microtubules that arise near a point on the nuclear membrane. Unlike other heliozoans, the microtubules are not in any regular geometric array, there does not appear to be a microtubule organizing center, and there is no distinction between the outer and inner cytoplasm.

<span class="mw-page-title-main">Centrohelid</span> Group of algae

The centrohelids or centroheliozoa are a large group of heliozoan protists. They include both mobile and sessile forms, found in freshwater and marine environments, especially at some depth.

<span class="mw-page-title-main">Cercozoa</span> Group of single-celled organisms

Cercozoa is a phylum of diverse single-celled eukaryotes. They lack shared morphological characteristics at the microscopic level, and are instead united by molecular phylogenies of rRNA and actin or polyubiquitin. They were the first major eukaryotic group to be recognized mainly through molecular phylogenies. They are the natural predators of many species of bacteria. They are closely related to the phylum Retaria, comprising amoeboids that usually have complex shells, and together form a supergroup called Rhizaria.

<span class="mw-page-title-main">Labyrinthulomycetes</span> Class of protists that produce a filamentous network

Labyrinthulomycetes (ICBN) or Labyrinthulea (ICZN) is a class of protists that produce a network of filaments or tubes, which serve as tracks for the cells to glide along and absorb nutrients for them. The two main groups are the labyrinthulids and thraustochytrids. They are mostly marine, commonly found as parasites on algae and seagrasses or as decomposers on dead plant material. They also include some parasites of marine invertebrates and mixotrophic species that live in a symbiotic relationship with zoochlorella.

<span class="mw-page-title-main">Cercomonad</span> Order of single-celled organisms

Cercomonads are small amoeboflagellates, widespread in aqueous habitats and common in soils.

<span class="mw-page-title-main">Phytomyxea</span> Class of protists

The Phytomyxea are a class of parasites that are cosmopolitan, obligate biotrophic protist parasites of plants, diatoms, oomycetes and brown algae. They are divided into the orders Plasmodiophorida and Phagomyxida. Plasmodiophorids are best known as pathogens or vectors for viruses of arable crops.

<span class="mw-page-title-main">Tectofilosid</span> Group of protists

The tectofilosids are a group of filose amoebae with shells. These are composed of organic materials and sometimes collected debris, in contrast to the euglyphids, which produce shells from siliceous scales. The shell usually has a single opening, but in Amphitrema and a few other genera it has two on opposite ends. The cell itself occupies most of the shell. They are most often found on marsh plants such as Sphagnum.

Gymnophryidae is a small family of amoeboids that lack shells and produce thin, reticulose pseudopods. These contain microtubules and have a granular appearance, owing to the presence of extrusomes, but are distinct from the pseudopods of Foraminifera. They are included among the Cercozoa, but differ from other cercozoans in having mitochondria with flat cristae, rather than tubular cristae.

Reticulosida is an order of Cercozoa that was created by Cavalier-Smith in 2003, but subsequently emended in by Bass et al. in 2009 to include only one monotypic family, the Filoretidae.

<span class="mw-page-title-main">Monadofilosa</span> Group of protists

Monadofilosa is a grouping of Cercozoa. These organisms are single-celled amoeboid protists.

Heliomorpha is a genus of Cercozoa, placed in its own family, Heliomorphidae. It used to be known as "Dimorpha", but that name was a junior synonym several times over.

<span class="mw-page-title-main">Apusomonadidae</span> Group of microorganisms with two flagella

The apusomonads are a group of protozoan zooflagellates that glide on surfaces, and mostly consume prokaryotes. They are of particular evolutionary interest because they appear to be the sister group to the Opisthokonts, the clade that includes both animals and fungi. Together with the Breviatea, these form the Obazoa clade.

<span class="mw-page-title-main">Perkinsea</span> Group of intracellular parasites

Perkinsids are single-celled protists that live as intracellular parasites of a variety of other organisms. They are classified as the class Perkinsea within the monotypic phylum Perkinsozoa. It is part of the eukaryotic supergroup Alveolata, along with dinoflagellates, their closest relatives, and another parasitic group known as Apicomplexa. Perkinsids are found in aquatic environments, as parasites of dinoflagellates and various animals.

<span class="mw-page-title-main">Vampyrellida</span> Order of single-celled organisms

The vampyrellids, colloquially known as vampire amoebae, are a group of free-living predatory amoebae classified as part of the lineage Endomyxa. They are distinguished from other groups of amoebae by their irregular cell shape with propensity to fuse and split like plasmodial organisms, and their life cycle with a digestive cyst stage that digests the gathered food. They appear worldwide in marine, brackish, freshwater and soil habitats. They are important predators of an enormous variety of microscopic organisms, from algae to fungi and animals. They are also known as aconchulinid amoebae.

<span class="mw-page-title-main">Taxonomy of Protista</span> Classification of eukaryotes

A protist is any eukaryotic organism that is not an animal, plant, or fungus. The protists do not form a natural group, or clade, since they exclude certain eukaryotes with whom they share a common ancestor; but, like algae or invertebrates, the grouping is used for convenience. In some systems of biological classification, such as the popular five-kingdom scheme proposed by Robert Whittaker in 1969, the protists make up a kingdom called Protista, composed of "organisms which are unicellular or unicellular-colonial and which form no tissues". In the 21st century, the classification shifted toward a two-kingdom system of protists: Chromista and Protozoa.

<span class="mw-page-title-main">Gromiida</span> Class of single-celled organisms

Gromiida is an order of cercozoans. It is the only order in the class Gromiidea.

Endohelea is a proposed clade of eukaryotes that are related to Archaeplastida and the SAR supergroup. They used to be considered heliozoans, but phylogenetically they belong to a group of microorganisms known as Cryptista.

Leucodictyids are heterotrophic amoeboid protists that comprise the order Leucodictyida in the phylum Cercozoa.

<i>Acinetactis</i> Genus of protista

Acinetactis is a possible genus of protist first described in 1886 by A.C. Stokes, who also described the type species A. mirabilis. In 1928, Valkanov reported the discovery of a second species, A. arnaudovii. The most recently recorded specimen of A. mirabilis was reported in 1940, no Acinetactis specimens have been reported since.

Cryptofilida is an order of small heterotrophic protists in the phylum Cercozoa. They are filose amoebae that lack cilia and gliding, and are instead characterized by movement through branching or unbranched granular filopodia that are appressed to the substrate during their feeding.

References

  1. 1 2 Bass D, Chao EE, Nikolaev S, Yabuki A, Ishida K, Berney C, Pakzad U, Wylezich C, Cavalier-Smith T (2009). "Phylogeny of novel naked Filose and Reticulose Cercozoa: Granofilosea cl. n. and Proteomyxidea revised". Protist. 160 (1): 75–109. doi:10.1016/j.protis.2008.07.002. PMID   18952499.
  2. Cavalier-Smith, Thomas (2017). "Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences". Protoplasma. 255 (1): 297–357. doi:10.1007/s00709-017-1147-3. PMC   5756292 . PMID   28875267.
  3. Ruggiero, Michael A.; Gordon, Dennis P.; Orrell, Thomas M.; Bailly, Nicolas; Bourgoin, Thierry; Brusca, Richard C.; Cavalier-Smith, Thomas; Guiry, Michael D.; Kirk, Paul M. (2015-04-29). "A Higher Level Classification of All Living Organisms". PLOS ONE. 10 (4): e0119248. Bibcode:2015PLoSO..1019248R. doi: 10.1371/journal.pone.0119248 . ISSN   1932-6203. PMC   4418965 . PMID   25923521.
  4. Adl, S.M.; Simpson, A.G.B.; Lane, C.E.; Lukeš, J.; Bass, D.; Bowser, S.S.; Brown, M.W.; Burki, F.; Dunthorn, M.; Hampl, V.; Heiss, A.; Hoppenrath, M.; Lara, E.; le Gall, L.; Lynn, D.H.; McManus, H.; Mitchell, E.A.D.; Mozley-Stanridge, S.E.; Parfrey, L.W.; Pawlowski, J.; Rueckert, S.; Shadwick, L.; Schoch, C.L.; Smirnov, A.; Spiegel, F.W. (September 2012), "The Revised Classification of Eukaryotes", Journal of Eukaryotic Microbiology, 59 (5): 429–514, doi:10.1111/j.1550-7408.2012.00644.x, PMC   3483872 , PMID   23020233