Cryomonadida

Last updated

Cryomonadida
Scientific classification
Domain:
(unranked):
SAR
(unranked):
Phylum:
Class:
Order:
Cryomonadida

Synonyms
  • Cryothecomonadida

Cryomonadida is a group of heterotrophic Rhizaria, that belong to the Cercozoa. [1]

Contents

Characteristics

Members of the Cryomonadida are single-celled organisms that are surrounded by a shell comprising layers of organic material. They possess two unequally long flagella, and a single nucleus with a distinct nucleolus. They have a laterally located cytostome, from which pseudopodia arise.

Systematics

The order Cryomonadida was erected in 1993 for the genus Cryothecomonas. In 2005, Sina Adl et al. did not include the order in their classification, but placed the genus incertae sedis among the Cercozoa. [2] It became clear, however, that other genera, and taxa known only from environmental DNA, belonged in this group, and so in 2008 Jan Pawlowski placed the Cryomonadida as part of the core Cercozoa. [3]

Within the Cercozoa, the sister taxon to Cryomonadida is Ebriacea; Pseudodifflugia is also closely related. [4]

The following genera are included:

Related Research Articles

<span class="mw-page-title-main">Cercozoa</span> Group of single-celled organisms

Cercozoa is a phylum of diverse single-celled eukaryotes. They lack shared morphological characteristics at the microscopic level, and are instead united by molecular phylogenies of rRNA and actin or polyubiquitin. They were the first major eukaryotic group to be recognized mainly through molecular phylogenies. They are the natural predators of many species of bacteria. They are closely related to the phylum Retaria, comprising amoeboids that usually have complex shells, and together form a supergroup called Rhizaria.

<span class="mw-page-title-main">Amoebozoa</span> Phylum of protozoans

Amoebozoa is a major taxonomic group containing about 2,400 described species of amoeboid protists, often possessing blunt, fingerlike, lobose pseudopods and tubular mitochondrial cristae. In traditional classification schemes, Amoebozoa is usually ranked as a phylum within either the kingdom Protista or the kingdom Protozoa. In the classification favored by the International Society of Protistologists, it is retained as an unranked "supergroup" within Eukaryota. Molecular genetic analysis supports Amoebozoa as a monophyletic clade. Modern studies of eukaryotic phylogenetic trees identify it as the sister group to Opisthokonta, another major clade which contains both fungi and animals as well as several other clades comprising some 300 species of unicellular eukaryotes. Amoebozoa and Opisthokonta are sometimes grouped together in a high-level taxon, variously named Unikonta, Amorphea or Opimoda.

<span class="mw-page-title-main">Opisthokont</span> Group of eukaryotes which includes animals and fungi, among other groups

The opisthokonts are a broad group of eukaryotes, including both the animal and fungus kingdoms. The opisthokonts, previously called the "Fungi/Metazoa group", are generally recognized as a clade. Opisthokonts together with Apusomonadida and Breviata comprise the larger clade Obazoa.

<span class="mw-page-title-main">Rhizaria</span> Infrakingdom of protists

The Rhizaria are a diverse and species-rich supergroup of mostly unicellular eukaryotes. Except for the Chlorarachniophytes and three species in the genus Paulinella in the phylum Cercozoa, they are all non-photosynthethic, but many foraminifera and radiolaria have a symbiotic relationship with unicellular algae. A multicellular form, Guttulinopsis vulgaris, a cellular slime mold, has been described. This group was used by Cavalier-Smith in 2002, although the term "Rhizaria" had been long used for clades within the currently recognized taxon. Being described mainly from rDNA sequences, they vary considerably in form, having no clear morphological distinctive characters (synapomorphies), but for the most part they are amoeboids with filose, reticulose, or microtubule-supported pseudopods. In the absence of an apomorphy, the group is ill-defined, and its composition has been very fluid. Some Rhizaria possess mineral exoskeletons, which are in different clades within Rhizaria made out of opal, celestite, or calcite. Certain species can attain sizes of more than a centimeter with some species being able to form cylindrical colonies approximately 1 cm in diameter and greater than 1 m in length. They feed by capturing and engulfing prey with the extensions of their pseudopodia; forms that are symbiotic with unicellular algae contribute significantly to the total primary production of the ocean.

<span class="mw-page-title-main">Phaeodarea</span> Class of protists

Phaeodarea or Phaeodaria is a group of amoeboid cercozoan organisms. They are traditionally considered radiolarians, but in molecular trees do not appear to be close relatives of the other groups, and are instead placed among the Cercozoa. They are distinguished by the structure of their central capsule and by the presence of a phaeodium, an aggregate of waste particles within the cell.

<span class="mw-page-title-main">Cercomonad</span> Order of single-celled organisms

Cercomonads are small amoeboflagellates, widespread in aqueous habitats and common in soils.

<span class="mw-page-title-main">Tectofilosid</span> Group of protists

The tectofilosids are a group of filose amoebae with shells. These are composed of organic materials and sometimes collected debris, in contrast to the euglyphids, which produce shells from siliceous scales. The shell usually has a single opening, but in Amphitrema and a few other genera it has two on opposite ends. The cell itself occupies most of the shell. They are most often found on marsh plants such as Sphagnum.

<span class="mw-page-title-main">Tubulinea</span> Class of protozoans

The Tubulinea are a major grouping of Amoebozoa, including most of the more familiar amoebae genera like Amoeba, Arcella, Difflugia and Hartmannella.

<span class="mw-page-title-main">Discosea</span> Class of amoebae

Discosea is a class of Amoebozoa, consisting of naked amoebae with a flattened, discoid body shape. Members of the group do not produce tubular or subcylindrical pseudopodia, like amoebae of the class Tubulinea. When a discosean is in motion, a transparent layer called hyaloplasm forms at the leading edge of the cell. In some discoseans, short "subpseudopodia" may be extended from this hyaloplasm, but the granular contents of the cell do not flow into these, as in true pseudopodia. Discosean amoebae lack hard shells, but some, like Cochliopodium and Korotnevella secrete intricate organic scales which may cover the upper (dorsal) surface of the cell. No species have flagella or flagellated stages of life.

<span class="mw-page-title-main">Monadofilosa</span> Group of protists

Monadofilosa is a grouping of Cercozoa. These organisms are single-celled amoeboid protists.

<span class="mw-page-title-main">Endomyxa</span> Group of single-celled organisms

Endomyxa is a group of eukaryotic organisms in the supergroup Rhizaria. They were initially a subphylum of Cercozoa and later a subphylum of Retaria, but several analyses have proven they are a phylogenetically separate lineage, and Endomyxa is currently regarded as its own phylum.

<span class="mw-page-title-main">Thecofilosea</span> Class of single-celled organisms

Thecofilosea is a class of unicellular testate amoebae belonging to the phylum Cercozoa. They are amoeboflagellates, organisms with flagella and pseudopodia, distinguished from other cercozoa by their scale-lacking test composed of organic material. They are closely related to the Imbricatea, a group of testate amoebae with tests composed of inorganic silica scales.

<span class="mw-page-title-main">Sarcomonadea</span> Class of flagellate protists

The sarcomonads or class Sarcomonadea are a group of amoeboid biciliate protists in the phylum Cercozoa. They are characterized by a propensity to move through gliding on their posterior cilium or through filopodia, a lack of scales or external theca, a soft cell surface without obvious cortical filamentous or membranous skeleton, two cilia without scales or hairs, tubular mitochondrial cristae, near-spherical extrusomes, and a microbody attached to the nucleus.

<span class="mw-page-title-main">Ancyromonadida</span> Group of protists

Ancyromonadida or Planomonadida is a small group of biflagellated protists found in the soil and in aquatic habitats, where they feed on bacteria. Includes freshwater or marine organisms, benthic, dorsoventrally compressed and with two unequal flagellae, each emerging from a separate pocket. The apical anterior flagellum can be very thin or end in the cell membrane, while the posterior flagellum is long and is inserted ventrally or laterally. The cell membrane is supported by a thin single-layered theca and the mitochondrial crests are discoidal/flat.

<span class="mw-page-title-main">Taxonomy of Protista</span> Classification of eukaryotes

A protist is any eukaryotic organism that is not an animal, plant, or fungus. The protists do not form a natural group, or clade, since they exclude certain eukaryotes with whom they share a common ancestor; but, like algae or invertebrates, the grouping is used for convenience. In some systems of biological classification, such as the popular five-kingdom scheme proposed by Robert Whittaker in 1969, the protists make up a kingdom called Protista, composed of "organisms which are unicellular or unicellular-colonial and which form no tissues". In the 21st century, the classification shifted toward a two-kingdom system of protists: Chromista and Protozoa.

<span class="mw-page-title-main">Cryptista</span> Phylum of algae

Cryptista is a clade of alga-like eukaryotes. It is most likely related to Archaeplastida which includes plants and many algae, within the larger group Diaphoretickes.

<span class="mw-page-title-main">Granofilosea</span> Class of single-celled organisms

Granofilosea is a class of cercozoan protists in the subphylum Reticulofilosa. Out of the three groups that were traditionally considered heliozoans: the heliomonads, gymnosphaerids and desmothoracids, the latter were recently grouped into this new class.

<span class="mw-page-title-main">Plasmodiophore</span> Group of fungi-like protists

The plasmodiophores are a group of obligate endoparasitic protists belonging to the subphylum Endomyxa in Cercozoa. Taxonomically, they are united under a single family Plasmodiophoridae, order Plasmodiophorida, sister to the phagomyxids.

<span class="mw-page-title-main">Phagomyxid</span> Group of pathogenic protists

Phagomyxids are a group of obligate endoparasitic protists belonging to the subphylum Endomyxa in Cercozoa. Taxonomically, they are united under a single family Phagomyxidae, order Phagomyxida, sister to the plasmodiophores.

<span class="mw-page-title-main">Ventrifilosa</span> Superclass of protists

Ventrifilosa is a highly diverse group of phagotrophic protists that glide through their flagella and emit filose pseudopods from their ventral side for feeding. Because of their mixture of amoeba and flagellate characteristics, they are amoeboflagellates. Members of this group are the Imbricatea, Sarcomonadea and Thecofilosea.

References

  1. Thomas Cavalier-Smith; Ema E.-Y. Chao (2003). "Phylogeny and classification of phylum Cercozoa (Protozoa)". Protist . 154 (3–4): 341–358. doi:10.1078/143446103322454112. PMID   14658494.
  2. Sina M. Adl; Alastair G. B. Simpson; Mark A. Farmer; Robert A. Andersen; O. Roger Anderson; et al. (2005). "The new higher level classification of eukaryotes with emphasis on the taxonomy of protists". Journal of Eukaryotic Microbiology . 52 (5): 399–451. doi: 10.1111/j.1550-7408.2005.00053.x . PMID   16248873.
  3. Jan Pawlowsk (2008). "The twilight of Sarcodina: a molecular perspective on the polyphyletic origin of amoeboid protists" (PDF). Protistology . 5 (4): 281–302.
  4. 1 2 3 Mona Hoppenrath; Brian S. Leander (2006). "Ebriid phylogeny and the expansion of the Cercozoa" (PDF). Protist . 157 (3): 279–290. doi:10.1016/j.protis.2006.03.002. PMID   16730229.
  5. Adl, S.M. et al. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology 59 (5): 429–514, .