Polycystine

Last updated

Polycystine
Radiolarian.png
Skeleton of a polycystine
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Phylum: Retaria
Subphylum: Radiolaria
Class: Polycystina
Ehrenberg, 1838, emend. Haeckel, 1887
Orders [1]

The polycystines are a group of radiolarians. They include the vast majority of the fossil radiolaria, as their skeletons are abundant in marine sediments, making them one of the most common groups of microfossils. These skeletons are composed of opaline silica. In some it takes the form of relatively simple spicules, but in others it forms more elaborate lattices, such as concentric spheres with radial spines or sequences of conical chambers. Two of the orders belonging to this group are the radially-symmetrical Spumellaria, dating back to the late Cambrian period, and the bilaterally-symmetrical Nasselaria, whose origin is placed within the lower Devonian. [2]

An illustration of polycystines of the subclass Spumellaria, from Ernst Haeckel's 1904 Kunstformen der Natur (Artforms of Nature) Haeckel Spumellaria.jpg
An illustration of polycystines of the subclass Spumellaria, from Ernst Haeckel's 1904 Kunstformen der Natur (Artforms of Nature)

Related Research Articles

<span class="mw-page-title-main">Acantharea</span> Class of single-celled organisms

The Acantharea (Acantharia) are a group of radiolarian protozoa, distinguished mainly by their strontium sulfate skeletons. Acantharians are heterotrophic marine microplankton that range in size from about 200 microns in diameter up to several millimeters. Some acantharians have photosynthetic endosymbionts and hence are considered mixotrophs.

<span class="mw-page-title-main">Radiolaria</span> Phylum of single-celled organisms

The Radiolaria, also called Radiozoa, are protozoa of diameter 0.1–0.2 mm that produce intricate mineral skeletons, typically with a central capsule dividing the cell into the inner and outer portions of endoplasm and ectoplasm. The elaborate mineral skeleton is usually made of silica. They are found as zooplankton throughout the global ocean. As zooplankton, radiolarians are primarily heterotrophic, but many have photosynthetic endosymbionts and are, therefore, considered mixotrophs. The skeletal remains of some types of radiolarians make up a large part of the cover of the ocean floor as siliceous ooze. Due to their rapid change as species and intricate skeletons, radiolarians represent an important diagnostic fossil found from the Cambrian onwards.

<span class="mw-page-title-main">Heliozoa</span> Phylum of protists with spherical bodies

Heliozoa, commonly known as sun-animalcules, are microbial eukaryotes (protists) with stiff arms (axopodia) radiating from their spherical bodies, which are responsible for their common name. The axopodia are microtubule-supported projections from the amoeboid cell body, and are variously used for capturing food, sensation, movement, and attachment. They are similar to Radiolaria, but they are distinguished from them by lacking central capsules and other complex skeletal elements, although some produce simple scales and spines. They may be found in both freshwater and marine environments.

<span class="mw-page-title-main">Busuanga Island</span> Island in the Calamian Group in the Philippines

Busuanga, is the largest island in the Calamian Group of islands in the province of Palawan in the Philippines. Busuanga Island is the second largest island in the province after Palawan island itself. The island is located halfway between the islands of Mindoro and Palawan with the South China Sea located to the west and the Sulu Sea to the southeast. South of the island are the two other major islands of the Calamian Group: Culion Island and Coron Island. The western third of the island is under the municipality of Busuanga and the eastern two-thirds belong to the municipality of Coron.

<span class="mw-page-title-main">Phaeodarea</span> Class of protists

Phaeodarea or Phaeodaria is a group of amoeboid cercozoan organisms. They are traditionally considered radiolarians, but in molecular trees do not appear to be close relatives of the other groups, and are instead placed among the Cercozoa. They are distinguished by the structure of their central capsule and by the presence of a phaeodium, an aggregate of waste particles within the cell.

<span class="mw-page-title-main">Symmetry in biology</span> Geometric symmetry in living beings

Symmetry in biology refers to the symmetry observed in organisms, including plants, animals, fungi, and bacteria. External symmetry can be easily seen by just looking at an organism. For example, the face of a human being has a plane of symmetry down its centre, or a pine cone displays a clear symmetrical spiral pattern. Internal features can also show symmetry, for example the tubes in the human body which are cylindrical and have several planes of symmetry.

<span class="mw-page-title-main">Radiolarite</span> Type of sedimentary rock

Radiolarite is a siliceous, comparatively hard, fine-grained, chert-like, and homogeneous sedimentary rock that is composed predominantly of the microscopic remains of radiolarians. This term is also used for indurated radiolarian oozes and sometimes as a synonym of radiolarian earth. However, radiolarian earth is typically regarded by Earth scientists to be the unconsolidated equivalent of a radiolarite. A radiolarian chert is well-bedded, microcrystalline radiolarite that has a well-developed siliceous cement or groundmass.

<span class="mw-page-title-main">Siliceous ooze</span> Biogenic pelagic sediment located on the deep ocean floor

Siliceous ooze is a type of biogenic pelagic sediment located on the deep ocean floor. Siliceous oozes are the least common of the deep sea sediments, and make up approximately 15% of the ocean floor. Oozes are defined as sediments which contain at least 30% skeletal remains of pelagic microorganisms. Siliceous oozes are largely composed of the silica based skeletons of microscopic marine organisms such as diatoms and radiolarians. Other components of siliceous oozes near continental margins may include terrestrially derived silica particles and sponge spicules. Siliceous oozes are composed of skeletons made from opal silica SiO2·nH2O, as opposed to calcareous oozes, which are made from skeletons of calcium carbonate (CaCO3·nH2O) organisms (i.e. coccolithophores). Silica (Si) is a bioessential element and is efficiently recycled in the marine environment through the silica cycle. Distance from land masses, water depth and ocean fertility are all factors that affect the opal silica content in seawater and the presence of siliceous oozes.

<i>The Radiolarian Series</i> 2008 studio album by Medeski Martin & Wood

The Radiolarian Series is an album project by experimental jazz fusion trio Medeski Martin & Wood released in three installments in 2008–2009.

<span class="mw-page-title-main">Spumellaria</span> Order of single-celled organisms

Spumellaria is an order of radiolarians in the class Polycystinea. They are ameboid protists appearing in abundance in the world's oceans, possessing a radially-symmetrical silica (opal) skeleton that has ensured their preservation in fossil records. They belong among the oldest Polycystine organisms, dating back to the lower Cambrian. Historically, many concentric radiolarians have been included in the Spumellaria order based on the absence of the initial spicular system, an early-develop structure that, by its lacking, sets them apart from Entactinaria despite their similar morphology. Living exemplars of the order feed by catching prey, such as copepod nauplii or tintinnids, on the adhesive ends of their pseudopodia extending radially from their skeleton; however, some have been observed as mixotrophs living in symbiosis with various photosynthetic algal organisms such as dinoflagellates, cyanobacteria, prasinophytes or haptophytes, which may cause their distribution to center in the greatest abundance and diversity within trophical waters.

The Ruhpolding Formation is a sedimentary formation of the Northern Calcareous Alps deposited during the Upper Jurassic. The open marine radiolarite is very rich in silica.

<span class="mw-page-title-main">Patterns in nature</span> Visible regularity of form found in the natural world

Patterns in nature are visible regularities of form found in the natural world. These patterns recur in different contexts and can sometimes be modelled mathematically. Natural patterns include symmetries, trees, spirals, meanders, waves, foams, tessellations, cracks and stripes. Early Greek philosophers studied pattern, with Plato, Pythagoras and Empedocles attempting to explain order in nature. The modern understanding of visible patterns developed gradually over time.

<span class="mw-page-title-main">Stylosphaeridae</span> Family of single-celled organisms

Stylosphaeridae is a family of radiolarians in the order Spumellaria. According to the original description by Ernst Haeckel, members of the family have a spherical central capsule within a fenestrated spherical siliceous shell, with two radial spines opposite in one axis. They are solitary. i.e. not associated in colonies.

The Tobago Volcanic Group is a geologic group in Trinidad and Tobago. It preserves radiolaria and ammonite fossils dating back to the Albian period. The formation contains the Bacolet Formation and comprises organic-rich, black pyritic siliceous mudstones and fine-grained volcaniclastic sandstones and siltstones.

<span class="mw-page-title-main">Nassellaria</span> Order of single-celled organisms

Nassellaria is an order of Rhizaria belonging to the class Radiolaria. The organisms of this order are characterized by a skeleton cross link with a cone or ring.

<span class="mw-page-title-main">Collodaria</span> Order of single-celled organisms

Collodaria is a unicellular order under the phylum Radiozoa and the infrakingdom Rhizaria. Like most of the Radiolaria taxonomy, Collodaria was first described by Ernst Haeckel, a German scholar who published three volumes of manuscript describing the extensive samples of Radiolaria collected by the voyage of HMS Challenger. Recent molecular phylogenetic studies concluded that there are Collodaria contains three families, Sphaerozodae, Collosphaeridae, and Collophidilidae.

The genus Stylodictya belongs to a group of organisms called the Radiolaria. Radiolarians are amoeboid protists found as zooplankton in oceans around the world and are typically identified by their ornate skeletons.

<i>Cornutella profunda</i> Species of single-celled organism

Cornutella profunda is a species of radiolarian in the family Theoperidae and the genus Cornutella. The abundance and actual geographic span of C. profunda has not yet been fully explored, however few have been caught in various regions around the world. Samples have seen in larger numbers in the Adriatic Sea, the South China Sea, and far off the coast of Southern Africa near Namibia, and in smaller numbers in all other oceans around the world.

<i>Collosphaera</i> Genus of radiolaria

Collosphaera is a radiolarian genus in the family Collosphaeridae. The genus contains bioluminescent species. It is a genus of colonial radiolarians.

<span class="mw-page-title-main">Protist shell</span> Protective shell of a type of eukaryotic organism

Many protists have protective shells or tests, usually made from silica (glass) or calcium carbonate (chalk). Protists are a diverse group of eukaryote organisms that are not plants, animals, or fungi. They are typically microscopic unicellular organisms that live in water or moist environments.

References