Hajigak mining concession

Last updated
Hajigak Mine
Afghanistan adm location map.svg
Red pog.svg
Hajigak Mine
Hajigak Mine
Coordinates: 34°40′N67°57′E / 34.667°N 67.950°E / 34.667; 67.950
CountryFlag of the Taliban.svg  Afghanistan
Provinces Maidan Wardak and Bamyan
Districts Hesa Awal Behsood and Shibar
Elevation
12,139 ft (3,700 m)

Hajigak Mine is the best known and largest iron oxide deposit in Afghanistan, located near the Hajigak Pass, with its area divided between Maidan Wardak and Bamyan provinces. It has the biggest untapped iron ore deposits of Asia. [1]

Contents

Summary of Deposits

The deposit itself stretches over 32 km and contains 16 separate zones, up to 5 km in length, 380 m wide and extending 550 m down dip, seven of which have been studied in detail. The ore occurs in both primary and oxidized states. The primary ore accounts for 80% of the deposit and consists of magnetite, pyrite and minor chalcopyrite. The remaining 20% is oxidized and consists of three hematitic ore types. The deposit remained unmined in 2006. The presence of coking coal nearby at Shabashak in the Dar-l-Suf District and large iron ore resources made the deposit viable for future development of an Afghan steel industry. Open pit mining and blast furnace smelting operations were envisioned by an early feasibility study. [2] [ not specific enough to verify ] The Hajigak also includes the unusual niobium, a soft metal used in the production of superconducting steel. [3] [ not specific enough to verify ]

History

Germans were the first to plan to exploit this deposit systematically after planning a steel mill during or shortly after World War I. In the 1960s Russians prepared a comprehensive report on the mineral resources of Afghanistan, however also failed to exploit the deposits.

When in the 1960s the Kala Bagh steel mill was planned in Pakistan, it was expected that it could partly use Hajigak iron ore. This is because the Pakistani mines where not of good quality at the time. However, this scheme failed.

Geology of Hajigak

Afghanistan has a complex geology due to its position on the junction between the Indo-Pakistan and Asian crustal plates. It is composed of a series of terranes that broke away from the main Gondwana super-continent before becoming accreted onto the southern margin of the Eurasian plate. The accretionary events started in the Cretaceous, around 140 million years ago, and have continued until recent times. At some stage in the early Cretaceous there is evidence of a collision of one of these blocks, the Farad block, with the Eurasian plate, along the Herat fault zone. Shortly afterwards, the Helmand block collided with the Farad block. The rocks that host the Hajigak deposit are within the Herat fault zone, and it is likely they were originally part of the Farad and Helmand Blocks.

The oldest part of the succession crops out north-west of the Hajigak deposits. It consists of grey silicified limestones and dolomites interbedded with dark grey crystalline schists and light coloured quartzites that display evidence of amphibolite grade metamorphism. The Hajigak iron deposit is hosted by the Upper Proterozoic Awband Formation that, together with the underlying Kab Formation, constitutes the Qala Series, a sequence of metavolcanic and metasedimentary rocks up to 4500m thick. The Kab Formation consists of dark grey sandy sericitic schists, interpreted as metamorphosed terrigenous rocks, acid volcanic rocks and minor beds of marble and phyllite. The Awband Formation is made up of schists (quartz-sericite, quartzchlorite-sericite, quartz-sericitechlorite and carbonaceoussericite) that are metamorphosed acid and basic tuffites and argillaceous rocks. Minor cherts and marbles also occur. The Green Schist Formation, a distinctive unit overlying the Awband Formation, consists dominantly of green chlorite schists, and quartz-sericitic schists locally intruded by granodiorites. Some reports consider it as a member of the Awband Formation. Upper Devonian rocks of the Hajigak Formation are faulted against the Green Schist Formation. Strata of Lower Cretaceous and younger age crop out in the south west of the area, unconformable on the older sequences.

The predominant strike of the Proterozoic and Palaeozoic rocks is between north-east and north-north-east, with a regional dip of approximately 50° towards the south-southeast or south-east. One major steeply dipping fault juxtaposes the Upper Proterozoic rocks against the crystalline middle Proterozoic rocks. Another throws Upper Devonian rocks against the Upper Proterozoic Green Schist Formation. In addition a suite of north–south and north-west–south-east trending faults, some of them probably thrusts, affect the Upper Proterozoic succession, including the iron ore deposits.

The Upper Proterozoic rocks of the Qala Series are interpreted as being deposited in a slowly subsiding marine basin. The initial basin fill was a variable sequence of sandstones and minor volcaniclastic sediments. Later there was an increase in volcanic activity and exhalative iron-rich fluids formed lenses on the sea floor. These sediments were subsequently altered by burial and low-grade (greenschist facies) metamorphism and became the basement of the Helmand Block. This block drifted away from Gondwana supercontinent in the Triassic. During the collision with Eurasia, in the early Cretaceous, faulting juxtaposed the Upper Proterozoic Qala series, the Middle Proterozoic rocks and the Upper Palaeozoic rocks. These fault-bounded blocks are a local characteristic of the Herat fault zone. As the collision progressed, the faulted blocks were folded into a northeast–south-west trending anticline the axis of which passes to the north of the area mapped. A series of thrusts developed as indicated by the increased thickness of the iron ore and its host rocks within the central zone at Hajigak. During the final phase of faulting the north–south and north-west–south-east faults that affect the ore deposits were developed. Later post-Cretaceous extension led to the further development of north-west–southeast faults and graben structures filled with young sediments. Subsequent erosion has exposed the core of the Hajigak anticline with the concordant ore bodies on the southeast limb.

Mineralisation

The Hajigak deposit trends north-east–south-west for about 9 km and is made up of 16 separate ore bodies, each up to 3 km in length. The deposit can be divided up into three geographical parts, the western, central and eastern parts. In addition to the large ore bodies there is a substantial area of thin fragmental ore deposits in the form of four surficial deposits. The main hematitic ore is medium- to fine-grained and displays a variety of massive, banded and porous textures. It occurs in lenses and sheets, within the Awband Formation. The thickness of the lenses has been indicated by drilling to be up to 100m, while the depth of mineralisation is untested 180m below surface. There are two main ore groups: unoxidised primary ores and semi-oxidised ores. The primary ores occur below 100 m and consist of magnetite and pyrite, and up to 5% chalcopyrite and pyrrhotite. The oxidised ores, extending up to 130m below ground surface, consist mainly of magnetite, martite and hydrogoethite. Two other oxidised ore types, hydrogoethite/hematite/semi-martite and carbonate/semi-martite, occur sporadically in small amounts in the deposit. Alteration that may be related to the mineralising event has been observed within the host rocks, and includes sericitisation, silicification and carbonisation.

Exploration

Iron occurrences were observed during initial geological mapping of the area in the mid thirties but the economical potential was not fully recognised until a joint Afghan-Soviet project, between 1963 and 1965, carried out an extensive study which mapped and described the deposit in some detail. The regional geology was mapped at 1:50 000 while the Hajigak deposit was mapped at 1:10 000. Focusing on the western area of the deposit, the study included detailed prospecting, trenching, ore sampling, four deep drillholes, a 200 m long horizontal adit and shafts into the fragmental ore. For two of the main ore bodies, I and II, horizontal plans and vertical crosssections were generated allowing the ore to be resource classified.

Development

The remote and mountainous location of Hajigak makes it a challenging project for future development. However, the large tonnage and high iron content make it attractive to companies with the proven ability to plan and develop large world-class mines in demanding areas. The deposit remains untested below 180m and there is a potential for ore at greater depth. Additional prospects and mineral occurrences over a 60 km along strike, at Darrah-i-Nil, Khesh, Zerak, Kharkiza, SurkhiParsa, further increase the potential of the area. A feasibility study for the exploitation of the Hajigak deposit was undertaken in 1972 by a Franco-German group, Nenot-Pic. This proposed the construction of a blast furnace, based on the occurrence nearby of coking coal, providing an opportunity for the creation of an integrated iron and steel plant.

Summary of Hajigak deposit

Award of concessions

In November 2011, the Afghan government has awarded four out of the five blocks at Hajigak to a consortium of seven Indian firms led by the Steel Authority of India (SAIL) and one block to Canada's Kilo Goldmines. [4]

Indian Government's Hajigak Mining Plan

Afghanistan adm location map.svg
Red pog.svg
Kabul
Red pog.svg
Herat
Red pog.svg
Jalalabad
Red pog.svg
Kandhar
Red pog.svg
Mazar-e-Sharif
Blue pog.svg
Farkhor Indian Airbase
Blue pog.svg
Uzbekistan
Blue pog.svg
Zaranj
Blue pog.svg
Quetta
Indian and Pakistani embassy and consulates in Afghanistan in red

In May 2016, India, Iran and Afghanistan signed an agreement to develop two berths at Port of Chabahar, build new Chabahar-Zahedan railway as part of North–South Transport Corridor by linking it with Trans-Iranian Railway, invest up to INR 1 lakh crore (US$14 billion) in the Chabahar Special Economic zone by building gas and urea plant as well as other industries, this will also be linked with [5] Chabahar-Zaranj-Delaram-Hajigak railway: 900 km long Indian-Iranian project, would link future US$10 billion Indian iron-ore mining operations at Hajigak, in Afghanistan to Chabahar, Iran. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Yilgarn Craton</span> Large craton in Western Australia

The Yilgarn Craton is a large craton that constitutes the bulk of the Western Australian land mass. It is bounded by a mixture of sedimentary basins and Proterozoic fold and thrust belts. Zircon grains in the Jack Hills, Narryer Terrane have been dated at ~4.27 Ga, with one detrital zircon dated as old as 4.4 Ga.

<span class="mw-page-title-main">Hajigak Pass</span>

The Hajigak Pass is a mountain pass of Afghanistan. It is situated at a height of 3,700 metres (12,100 ft) above sea-level in the northern part of Maidan Wardak province, connecting it with Bamyan province to the northwest. It is one of the two main routes from Kabul to Bamyan in Hazarajat, leading across the Koh-i-Baba range.

Shibar, is a district located in the western end of the Bamyan province in Afghanistan. It is in a mountainous region. The main village Shibar is at 2,637 m altitude on the all-seasons secondary road from Bamyan to Kabul through the Shibar Pass.

<span class="mw-page-title-main">Rail transport in Afghanistan</span> Afghan railway system

Afghanistan has three railway lines in the north of the country. The first is between Mazar-i-Sharif and the border town of Hairatan in Balkh province, which then connects with Uzbek Railways of Uzbekistan. The second links Torghundi in Herat province with Turkmen Railways of Turkmenistan. The third is between Turkmenistan and Aqina in Faryab province of Afghanistan, which extends south to the city of Andkhoy. The country currently lacks a passenger rail service, but a new rail link from Herat to Khaf in Iran for both cargo and passengers was recently completed. Passenger service is also proposed in Hairatan – Mazar-i-Sharif section and Mazar-i-Sharif – Aqina section.

<span class="mw-page-title-main">Chabahar Port</span> Port in Iran

Chabahar Port is a seaport in Chabahar located in southeastern Iran, on the Gulf of Oman. It serves as Iran's only oceanic port, and consists of two separate ports named Shahid Kalantari and Shahid Beheshti, each of which has five berths. It is only about 170 kilometres west of the Pakistani port of Gwadar.

<span class="mw-page-title-main">Mining in Afghanistan</span>

Mining in Afghanistan was controlled by the Ministry of Mines and Petroleum, prior to the August 15th takeover by the Taliban. It is headquartered in Kabul with regional offices in other parts of the country. Afghanistan has over 1,400 mineral fields, containing barite, chromite, coal, copper, gold, iron ore, lead, natural gas, petroleum, precious and semi-precious stones, salt, sulfur, lithium, talc, and zinc, among many other minerals. Gemstones include high-quality emeralds, lapis lazuli, red garnet and ruby. According to a joint study by The Pentagon and the United States Geological Survey, Afghanistan has an estimated US$1 trillion of untapped minerals.

Iron oxide copper gold ore deposits (IOCG) are important and highly valuable concentrations of copper, gold and uranium ores hosted within iron oxide dominant gangue assemblages which share a common genetic origin.

<span class="mw-page-title-main">Atacama Fault</span> System of geological faults in northern Chile

The Atacama Fault Zone (AFZ) is an extensive system of faults cutting across the Chilean Coastal Cordillera in Northern Chile between the Andean Mountain range and the Pacific Ocean. The fault system is North-South striking and runs for more than 1100 km North and up to 50 km in width through the Andean forearc region. The zone is a direct result of the ongoing subduction of the Eastward moving Nazca Plate beneath the South American Plate and is believed to have formed in the Early Jurassic during the beginnings of the Andean orogeny. The zone can be split into 3 regions: the North, Central and South.

From 1971 to 1972, Soviet exploration work was carried out on the extent of the mine. Additional work was carried out by USGS in 2005 including airborne surveys, hyperspectral surveys and analysis, and the compilation of prior data into a GIS database. The USGS reports that in the larger USGS defined Dusar-Shaida Area of Interest, there has been some mining. However, there is no known historic production from the Shaida licence area. The mine is estimated to contain five million tonnes of copper.

<span class="mw-page-title-main">Geology of Iran</span>

The main points that are discussed in the geology of Iran include the study of the geological and structural units or zones; stratigraphy; magmatism and igneous rocks; ophiolite series and ultramafic rocks; and orogenic events in Iran.

The geology of Mozambique is primarily extremely old Precambrian metamorphic and igneous crystalline basement rock, formed in the Archean and Proterozoic, in some cases more than two billion years ago. Mozambique contains greenstone belts and spans the Zimbabwe Craton, a section of ancient stable crust. The region was impacted by major tectonic events, such as the mountain building Irumide orogeny, Pan-African orogeny and the Snowball Earth glaciation. Large basins that formed in the last half-billion years have filled with extensive continental and marine sedimentary rocks, including rocks of the extensive Karoo Supergroup which exist across Southern Africa. In some cases these units are capped by volcanic rocks. As a result of its complex and ancient geology, Mozambique has deposits of iron, coal, gold, mineral sands, bauxite, copper and other natural resources.

<span class="mw-page-title-main">Geology of Zambia</span>

The geological history of Zambia begins in the Proterozoic eon of the Precambrian. The igneous and metamorphic basement rocks tend to be highly metamorphosed and may have formed earlier in the Archean, but heat and pressure has destroyed evidence of earlier conditions. Major sedimentary and metamorphic groups formed in the mid-Proterozoic, followed by a series of glaciations in the Neoproterozoic and much of the Paleozoic which deposited glacial conglomerate as well as other sediments to form the Katanga Supergroup and rift-related Karoo Supergroup. Basalt eruptions blanketed the Karoo Supergroup in the Mesozoic and Zambia shifted to coal and sandstone formation. Geologically recent windblown sands from the Kalahari Desert and alluvial deposits near rivers play an important role in the modern surficial geology of Zambia. The country has extensive natural resources, particularly copper, but also cobalt, emeralds, other gemstones, uranium and coal.

<span class="mw-page-title-main">Geology of Senegal</span>

The geology of Senegal formed beginning more than two billion years ago. The Archean greenschist Birimian rocks common throughout West Africa are the oldest in the country, intruded by Proterozoic granites. Basins formed in the interior during the Paleozoic and filled with sedimentary rocks, including tillite from a glaciation. With the rifting apart of the supercontinent Pangaea in the Mesozoic, the large Senegal Basin filled with thick sequences of marine and terrestrial sediments. Sea levels declined in the Eocene forming large phosphate deposits. Senegal is blanketed in thick layers of terrestrial sediments formed in the Quaternary. The country has extensive natural resources, including gold, diamonds, and iron.

The geology of Nigeria formed beginning in the Archean and Proterozoic eons of the Precambrian. The country forms the Nigerian Province and more than half of its surface is igneous and metamorphic crystalline basement rock from the Precambrian. Between 2.9 billion and 500 million years ago, Nigeria was affected by three major orogeny mountain-building events and related igneous intrusions. Following the Pan-African orogeny, in the Cambrian at the time that multi-cellular life proliferated, Nigeria began to experience regional sedimentation and witnessed new igneous intrusions. By the Cretaceous period of the late Mesozoic, massive sedimentation was underway in different basins, due to a large marine transgression. By the Eocene, in the Cenozoic, the region returned to terrestrial conditions.

<span class="mw-page-title-main">Geology of Belarus</span>

The geology of Belarus began to form more than 2.5 billion years ago in the Precambrian, although many overlying sedimentary units deposited during the Paleozoic and the current Quaternary. Belarus is located in the eastern European plain. From east to west it covers about 650 kilometers while from north to south it covers about 560 kilometers, and the total area is about 207,600 square kilometers. It borders Poland in the north, Lithuania in the northwest, Latvia and Russia in the north, and Ukraine in the south. Belarus has a planar topography with a height of about 160 m above sea level. The highest elevation at 346 meters above sea level is Mt. Dzerzhinskaya, and the lowest point at the height of 80 m is in the Neman River valley.

The geology of Ukraine is the regional study of rocks, minerals, tectonics, natural resources and groundwater in Ukraine. The oldest rocks in the region are part of the Ukrainian Shield and formed more than 2.5 billion years ago in the Archean eon of the Precambrian. Extensive tectonic evolution and numerous orogeny mountain-building events fractured the crust into numerous block, horsts, grabens and depressions. Ukraine was intermittently flooded as the crust downwarped during much of the Paleozoic, Mesozoic and early Cenozoic, before the formation of the Alps and Carpathian Mountains defined much of its current topography and tectonics. Ukraine was impacted by the Pleistocene glaciations within the last several hundred thousand years. The country has numerous metal deposits as well as minerals, building stone and high-quality industrial sands.

<span class="mw-page-title-main">Geology of North Macedonia</span> Overview of geology in North Macedonia

The geology of North Macedonia includes the study of rocks dating to the Precambrian and a wide array of volcanic, sedimentary and metamorphic rocks formed in the last 539 million years.

<span class="mw-page-title-main">Geology of Afghanistan</span>

The geology of Afghanistan includes nearly one billion year old rocks from the Precambrian. The region experienced widespread marine transgressions and deposition during the Paleozoic and Mesozoic, that continued into the Cenozoic with the uplift of the Hindu Kush mountains.

<span class="mw-page-title-main">Geology of Bulgaria</span>

The geology of Bulgaria consists of two major structural features. The Rhodope Massif in southern Bulgaria is made up of Archean, Proterozoic and Cambrian rocks and is a sub-province of the Thracian-Anatolian polymetallic province. It has dropped down, faulted basins filled with Cenozoic sediments and volcanic rocks. The Moesian Platform to the north extends into Romania and has Paleozoic rocks covered by rocks from the Mesozoic, typically buried by thick Danube River valley Quaternary sediments. In places, the Moesian Platform has small oil and gas fields. Bulgaria is a country in southeastern Europe. It is bordered by Romania to the north, Serbia and North Macedonia to the west, Greece and Turkey to the south, and the Black Sea to the east.

The Chilean Iron Belt is a geological province rich in iron ore deposits in northern Chile. It extends as a north-south beld along the western part of the Chilean regions of Coquimbo and Atacama, chiefly between the cities of La Serena and Taltal. The belt follows much of the Atacama Fault System and is about 600 km long and 25 km broad.

References

  1. Graham Bowley (September 9, 2012). "Potential for a Mining Boom Splits Factions in Afghanistan". The New York Times. Retrieved September 9, 2012.
  2. USGS
  3. aol
  4. Patnaik, Ajay (2016), Central Asia: Geopolitics, Security and Stability, Routledge, pp. 142–, ISBN   978-1-317-26640-2
  5. "Fears mount for future of India's Afghan silk route plans". 15 February 2015.
  6. India-Iran sign key agreements, Published: 23 May 2016