Hallam Nuclear Generating Station

Last updated
Hallam Nuclear Generating Station CH 10 11 (26523818235).jpg
Hallam Nuclear Generating Station

The Hallam Nuclear Power Facility (HNPF) in Nebraska was a 75 MWe graphite-moderated sodium-cooled nuclear power plant built by Atomics International. [1]

Contents

Full power was achieved in July 1963. The facility shut down on September 27, 1964 to resolve reactor problems. In May 1966, Consumers Public Power District rejected their option to purchase the facility from the Atomic Energy Commission (AEC). In response, the AEC announced its plan to decommission the facility in June, 1966. The facility operated for 6,271 hours and generated 192,458,000 kW-hrs of electric power [2] .

It was located near Hallam, about 25 miles southwest of Lincoln.

Description

The Hallam Nuclear Reactor Structure Hallam Nuclear Reactor Structure.jpg
The Hallam Nuclear Reactor Structure

The graphite-moderated sodium-cooled reactor design was an attempt to achieve economical commercial nuclear electricity. The liquid metal coolant enabled high-temperature, low-pressure operation. The graphite moderator enabled operation with low-enriched nuclear fuel. The benefits of this combination were expected to overcome the added complication of a chemically reactive coolant. [3]

The reactor was initially fueled with 3.6% enriched uranium-10 molybdenum alloy with stainless steel fuel. The graphite moderator was also clad in stainless steel. Three sodium heat-transfer loops (each with a radioactive primary loop and a non-radioactive secondary) moved heat to three steam generators. Steam fed into a common header to a single turbine-generator. The primary hot leg temperature was 945 °F and the secondary hot leg temperature was 895 °F.

Uranium carbide was selected for the second core, at 4.9% enrichment.

Proposal, Development, and Construction

Grid plate with 141 moderator can supports placed preparatory to security the supports to the grid plate Hallam Nuclear Grid Plate.jpg
Grid plate with 141 moderator can supports placed preparatory to security the supports to the grid plate
Reactor vessel of type 304 SS viewed during radiographing of final weld joints, showing support pads and keyways on the bottom of the vessel Hallam Nuclear Reactor Vessel.png
Reactor vessel of type 304 SS viewed during radiographing of final weld joints, showing support pads and keyways on the bottom of the vessel


Hallam was proposed in March 1955 in response to the first round of invitations by the Atomic Energy Commission's Power Demonstration Reactor Program. [5] It used technology being developed in the smaller Sodium Reactor Experiment (SRE), also built by Atomics International. Lessons from SRE applied to HNPF include:

Because HNPF was more than ten times larger than SRE, a components development and test program was performed to provide final design data. All major components, including fuel, control rods, instrumentation, pumps, and valves were tested. The fuel handling machine was assembled and tested. Scale model of a steam generator was tested in a sodium loop along related equipment and instrumentation [2] .

A formal three-session training program for operators was conducted in 1960. 30 personnel attended the first session for six months. Each person received approximately 900 hours of training.

Construction began on April 1, 1959. Employment during construction peaked at 270 in March, 1961, and 107,600 person-days total were required to complete the construction. A variety of construction assembly interferences were anticipated, and detailed scale models were procured. Labor problems resulted in the loss of 1750 person-days. The entire facility was completed on November 30, 1961, 4 months past the original planned date of completion [2] .

Operation and shutdown

Initial criticality was achieved in January 1962, followed by wet criticality six months later. Difficulties that arose during operation and required plant shutdown and correction included leaking control rod thimbles, seizure of secondary sodium pumps, leaking steam generator instrumentation and pipe flanges, difficulty of adjusting fuel channel flow orifices, and failure of primary and secondary sodium throttle valves.

The most serious issue was the ruptures of moderator elements. Three elements ruptures in February, 1964. The ruptures and subsequent absorption of sodium into the graphite reduced the thermal neutron flux in the core and therefore a reduction in local power. The moderator elements swelled as well, reducing coolant and process space. Examination disclosed that failure was caused by low ductility stress-rupture leading to a one inch long crack about three inches below the top of each element.

Because the cost of correcting the failure would have outweighed the benefits, the plant was instead decommissioned and the nuclear components sealed in concrete.

The plant's single 75 MWe reactor operated from 1963 to September 27, 1964. [2] Decommissioning was completed in 1969. [6]

Present day

Currently the site holds a fossil-fuel plant, Sheldon Power Station. The site is monitored from 17 monitoring wells and no radioactivity above background levels in any samples has been detected. [7]

Related Research Articles

Nuclear reactor device to initiate and control a sustained nuclear chain reaction

A nuclear reactor, formerly known as an atomic pile, is a device used to initiate and control a self-sustained nuclear chain reaction. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. As of early 2019, the IAEA reports there are 454 nuclear power reactors and 226 nuclear research reactors in operation around the world.

Pressurized water reactor nuclear reactor with a cooling system that operates under high pressure

Pressurized water reactors (PWRs) constitute the large majority of the world's nuclear power plants and are one of three types of light-water reactor (LWR), the other types being boiling water reactors (BWRs) and supercritical water reactors (SCWRs). In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated water then flows to a steam generator where it transfers its thermal energy to a secondary system where steam is generated and flows to turbines which, in turn, spin an electric generator. In contrast to a boiling water reactor, pressure in the primary coolant loop prevents the water from boiling within the reactor. All LWRs use ordinary water as both coolant and neutron moderator.

Advanced Gas-cooled Reactor type of nuclear reactor

An Advanced Gas-cooled Reactor (AGR) is a type of nuclear reactor designed and operated in the United Kingdom. These are the second generation of British gas-cooled reactors, using graphite as the neutron moderator and carbon dioxide as coolant. They have been the backbone of the UK's nuclear generation fleet since the 1980s.

Nuclear meltdown severe nuclear reactor accident that results in core damage from overheating

A nuclear meltdown is a severe nuclear reactor accident that results in core damage from overheating. The term nuclear meltdown is not officially defined by the International Atomic Energy Agency or by the Nuclear Regulatory Commission. It has been defined to mean the accidental melting of the core of a nuclear reactor, however, and is in common usage a reference to the core's either complete or partial collapse.

RBMK commercial nuclear reactor design

The RBMK is a class of graphite-moderated nuclear power reactor designed and built by the Soviet Union. The name refers to its unusual design where, instead of a large steel pressure vessel surrounding the entire core, each fuel assembly is enclosed in an individual 8 cm diameter pipe which allows the flow of cooling water around the fuel.

Fast-neutron reactor nuclear reactor in which the fission chain reaction is sustained by fast neutrons

A fast-neutron reactor (FNR) or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons, as opposed to thermal neutrons used in thermal-neutron reactors. Such a reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor.

Passive nuclear safety is a design approach for safety features, implemented in a nuclear reactor, that does not require any active intervention on the part of the operator or electrical/electronic feedback in order to bring the reactor to a safe shutdown state, in the event of a particular type of emergency. Such design features tend to rely on the engineering of components such that their predicted behaviour would slow down, rather than accelerate the deterioration of the reactor state; they typically take advantage of natural forces or phenomena such as gravity, buoyancy, pressure differences, conduction or natural heat convection to accomplish safety functions without requiring an active power source. Many older common reactor designs use passive safety systems to a limited extent, rather, relying on active safety systems such as diesel powered motors. Some newer reactor designs feature more passive systems; the motivation being that they are highly reliable and reduce the cost associated with the installation and maintenance of systems that would otherwise require multiple trains of equipment and redundant safety class power supplies in order the achieve the same level of reliability. However, weak driving forces that power many passive safety features can pose significant challenges to effectiveness of a passive system, particularly in the short term following an accident.

Enrico Fermi Nuclear Generating Station nuclear power plant

The Enrico Fermi Nuclear Generating Station is a nuclear power plant on the shore of Lake Erie near Monroe, in Frenchtown Charter Township, Michigan on approximately 1,000 acres. All units of the plant are operated by the DTE Energy Electric Company and owned by parent company DTE Energy. It is approximately halfway between Detroit, Michigan, and Toledo, Ohio. It is also visible from parts of Amherstburg and Colchester, Ontario as well as on the shore of Lake Erie in Ottawa County, Ohio along with Ohio Turnpike. Two units have been constructed on this site. The first unit's construction started on August 4, 1956 and reached initial criticality on August 23, 1963, and the second unit received its construction permit on September 26, 1972. It reached criticality in June 21, 1985 and was declared commercial on November 18, 1988. The plant is connected to two single-circuit 345 kV Transmission Lines and 3 120 kV lines. They are operated and maintained by ITC Transmission.

The Steam Generating Heavy Water Reactor (SGHWR) is a United Kingdom design for commercial nuclear reactors. It uses heavy water as the neutron moderator and normal "light" water as the coolant. The coolant boils in the reactor, like a boiling water reactor, and drives the power-extraction steam turbines.

Steam generator (nuclear power) heat exchanger used to convert water into steam from heat produced in a nuclear reactor core

Steam generators are heat exchangers used to convert water into steam from heat produced in a nuclear reactor core. They are used in pressurized water reactors (PWR) between the primary and secondary coolant loops.

BN-600 reactor russian reactor type from the BN family; fast breeder, cooled with sodium

The BN-600 reactor is a sodium-cooled fast breeder reactor, built at the Beloyarsk Nuclear Power Station, in Zarechny, Sverdlovsk Oblast, Russia. Designed to generate electrical power of 600 MW in total, the plant dispatches 560 MW to the Middle Urals power grid. It has been in operation since 1980 and represents an evolution on the preceding BN-350 reactor. In 2014, its larger sister reactor, the BN-800 reactor began operation.

Beloyarsk Nuclear Power Station Nuclear power station

The Beloyarsk Nuclear Power Station was the third of the Soviet Union's nuclear plants. It is situated by Zarechny in Sverdlovsk Oblast, Russia. Zarechny township was created to service the station, which is named after the Beloyarsky District. The closest city is Yekaterinburg.

Graphite-moderated reactor

A graphite reactor is a nuclear reactor that uses carbon as a neutron moderator, which allows un-enriched uranium to be used as nuclear fuel.

Carolinas–Virginia Tube Reactor nuclear reactor

Carolinas–Virginia Tube Reactor (CVTR), also known as Parr Nuclear Station, was an experimental pressurized tube heavy water nuclear power reactor at Parr, South Carolina in Fairfield County. It was built and operated by the Carolinas Virginia Nuclear Power Associates. CVTR was a small test reactor, capable of generating 17 megawatts of electricity. It was officially commissioned in December 1963 and left service in January 1967.

Obninsk Nuclear Power Plant

Obninsk Nuclear Power Plant was built in the "Science City" of Obninsk, Kaluga Oblast, about 110 km (68 mi) southwest of Moscow, Soviet Union. Connected to the power grid in June 1954, Obninsk was the first grid-connected nuclear power plant in the world, i.e. the first nuclear reactor that produced electricity industrially, albeit at small scale. It was located at the Institute of Physics and Power Engineering. The plant is also known as APS-1 Obninsk. It remained in operation between 1954 and 2002, although its production of electricity for the grid ceased in 1959; thereafter it functioned as a research and isotope production plant only.

Sodium Reactor Experiment

The Sodium Reactor Experiment was a pioneering nuclear power plant built by Atomics International at the Santa Susana Field Laboratory near Simi Valley, California. The reactor operated from 1957 to 1964. On July 12, 1957 the Sodium Reactor Experiment became the first nuclear reactor in the United States to produce electrical power for a commercial power grid by powering the nearby city of Moorpark. In July 1959, the reactor experienced a partial meltdown where 13 of the reactor's 43 fuel elements partially melted, and a controlled release of radioactive gas into the atmosphere occurred. The reactor was repaired and restarted in September 1960. In February 1964, the Sodium Reactor Experiment was in operation for the last time. Removal of the deactivated reactor was completed in 1981. Technical analyses of the 1959 incident have produced contrasting conclusions regarding the types and quantities of radioactive materials released. Members of the neighboring communities have expressed concerns about the possible impacts on their health and environment from the incident. In August 2009, 50 years after the occurrence, the Department of Energy hosted a community workshop to discuss the 1959 incident.

The BN-800 reactor is a sodium-cooled fast breeder reactor, built at the Beloyarsk Nuclear Power Station, in Zarechny, Sverdlovsk Oblast, Russia. The reactor is designed to generate 880 MW of electrical power. The plant was considered part of the weapons-grade Plutonium Management and Disposition Agreement signed between the United States and Russia, with the reactor part of the final step for a plutonium-burner core. The plant reached its full power production in August, 2016. According to Russian business journal Kommersant, the BN-800 project cost 140,6 billion rubles.

Integral Molten Salt Reactor

The Integral Molten Salt Reactor (IMSR) is a design for a small modular reactor (SMR) that employs molten salt reactor technology being developed by the Canadian company Terrestrial Energy. It is based closely on the denatured molten salt reactor (DMSR), a reactor design from Oak Ridge National Laboratory, and also incorporates elements found in the SmAHTR, a later design from the same laboratory. The IMSR belongs to the DMSR class of molten salt reactors (MSR) and hence is a "burner" reactor that employs a liquid fuel rather than a conventional solid fuel; this liquid contains the nuclear fuel and also serves as primary coolant.

Organic nuclear reactor type of nuclear reactor

An organic nuclear reactor, or organic cooled reactor (OCR), is a type of nuclear reactor that uses some form of organic fluid, typically a hydrocarbon substance like polychlorinated biphenyl (PCB), for cooling and sometimes as a neutron moderator as well.

References

  1. "IAEA - Reactor Details - Hallam". IAEA. 2013-04-13. Retrieved 2013-04-14.
  2. 1 2 3 4 Burton, S.F.; Holser, A.G. (1966-10-01). Small nuclear power plants (Vol 1 ed.). US Atomic Energy Commission. p. 140. Retrieved 31 December 2019.
  3. Starr, Chauncey; Dickinson, Robert (1958). Sodium graphite reactors. Addison-Wesley Pub. Co. Retrieved 31 December 2019.
  4. Mahlmeister, J.E. (1961-12-01). "Engineering and constructing the Hallam Nuclear Power Facility reactor structure". Atomics International. Retrieved 31 December 2019.
  5. Atomic Energy Commission (1963-10-15). "Cooperative Power Reactor Demonstration Program". Hearings before the United States Joint Committee on Atomic Energy, Subcommittee on Legislation, Eighty-Eighth Congress: 227. Retrieved 31 December 2019.
  6. State's First Nuclear Power Plant
  7. "Hallam, Nebraska, Decommissioned Reactor Site Fact Sheet" (PDF). US DOE Office of Legacy Management. Retrieved 31 December 2019.

Coordinates: 40°33′33.30″N96°47′04.96″W / 40.5592500°N 96.7847111°W / 40.5592500; -96.7847111