Halococcaceae

Last updated

Halococcaceae
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Halococcaceae

Gupta et al. 2016
Genera

Halococcaceae is a family of halophilic and mostly chemoorganotrophic archaea within the order Halobacteriales . [1] [2] [3] The type genus of this family is Halococcus. [4] Its biochemical characteristics are the same as the order Halobacteriales.

The name Halococcaceae is derived from the Latin term Halococcus, referring to the type genus of the family and the suffix "-ceae", an ending used to denote a family. Together, Halococcaceae refers to a family whose nomenclatural type is the genus Halococcus.

Current Taxonomy and Molecular Signatures

As of 2021, Halococcaceae contains a single validly published genus, Halococcus . [4] This family can be molecularly distinguished from other Halobacteria by the presence of 23 conserved signature proteins (CSPs) and nine conserved signature indels (CSIs) present in the following proteins: DNA gyrase subunit B, chaperone protein DnaK, HAD-superfamily hydrolase, glycosyltransferase, 2-Succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase, iron-regulated ABC transporter, glycine dehydrogenase subunit 2, GMP synthase and a hypothetical protein. [1]

Related Research Articles

<span class="mw-page-title-main">Enterobacteriaceae</span> Family of bacteria

Enterobacteriaceae is a large family of Gram-negative bacteria. It includes over 30 genera and more than 100 species. Its classification above the level of family is still a subject of debate, but one classification places it in the order Enterobacterales of the class Gammaproteobacteria in the phylum Pseudomonadota. In 2016, the description and members of this family were emended based on comparative genomic analyses by Adeolu et al.

A halophile is an extremophile that thrives in high salt concentrations. In chemical terms, halophile refers to a Lewis acidic species that has some ability to extract halides from other chemical species.

Halobacteriaceae is a family in the order Halobacteriales and the domain Archaea. Halobacteriaceae represent a large part of halophilic Archaea, along with members in two other methanogenic families, Methanosarcinaceae and Methanocalculaceae. The family consists of many diverse genera that can survive extreme environmental niches. Most commonly, Halobacteriaceae are found in hypersaline lakes and can even tolerate sites polluted by heavy metals. They include neutrophiles, acidophiles, alkaliphiles, and there have even been psychrotolerant species discovered. Some members have been known to live aerobically, as well as anaerobically, and they come in many different morphologies. These diverse morphologies include rods in genus Halobacterium, cocci in Halococcus, flattened discs or cups in Haloferax, and other shapes ranging from flattened triangles in Haloarcula to squares in Haloquadratum, and Natronorubrum. Most species of Halobacteriaceae are best known for their high salt tolerance and red-pink pigmented members, but there are also non-pigmented species and those that require moderate salt conditions. Some species of Halobacteriaceae have been shown to exhibit phosphorus solubilizing activities that contribute to phosphorus cycling in hypersaline environments. Techniques such as 16S rRNA analysis and DNA-DNA hybridization have been major contributors to taxonomic classification in Halobacteriaceae, partly due to the difficulty in culturing halophilic Archaea.

<span class="mw-page-title-main">Halobacteriales</span> Order of archaea

Halobacteriales are an order of the Halobacteria, found in water saturated or nearly saturated with salt. They are also called halophiles, though this name is also used for other organisms which live in somewhat less concentrated salt water. They are common in most environments where large amounts of salt, moisture, and organic material are available. Large blooms appear reddish, from the pigment bacteriorhodopsin. This pigment is used to absorb light, which provides energy to create ATP. Halobacteria also possess a second pigment, halorhodopsin, which pumps in chloride ions in response to photons, creating a voltage gradient and assisting in the production of energy from light. The process is unrelated to other forms of photosynthesis involving electron transport; however, and halobacteria are incapable of fixing carbon from carbon dioxide.

The Caryophanaceae is a family of Gram-positive bacteria. In 2020, the now defunct family Planococcaceae was merged into Caryophanaceae to rectify a nomenclature anomaly. The type genus of this family is Caryophanon.

<span class="mw-page-title-main">Haloarchaea</span> Class of salt-tolerant archaea

Haloarchaea are a class of the Euryarchaeota, found in water saturated or nearly saturated with salt. Halobacteria are now recognized as archaea rather than bacteria and are one of the largest groups. The name 'halobacteria' was assigned to this group of organisms before the existence of the domain Archaea was realized, and while valid according to taxonomic rules, should be updated. Halophilic archaea are generally referred to as haloarchaea to distinguish them from halophilic bacteria.

Halobiforma is a genus of halophilic archaea of the family Natrialbaceae.

In taxonomy, Natrialba is a genus of the Natrialbaceae. The genus consists of many diverse species that can survive extreme environmental niches, especially they are capable to live in the waters saturated or nearly saturated with salt (halophiles). They have certain adaptations to live within their salty environments. For example, their cellular machinery is adapted to high salt concentrations by having charged amino acids on their surfaces, allowing the cell to keep its water molecules around these components. The osmotic pressure and these amino acids help to control the amount of salt within the cell.

Natronomonas is a genus of the Halobacteriaceae.

Adlercreutzia is a genus in the phylum Actinomycetota (Bacteria).

Thermaceae is a family of bacteria belonging to the phylum Deinococcota. It is the only family in the order Thermales. They are particularly resistant to heat, and live in the benthic zone of the Gulf of Mexico.

Haloterrigena turkmenica is an aerobic chemo organotrophic archeon originally found in Turkish salt lakes.

<span class="mw-page-title-main">Haloferacaceae</span> Family of bacteria

Haloferacaceae is a family of halophilic, chemoorganotrophic or heterotrophic archaea within the order Haloferacales. The type genus of this family is Haloferax. Its biochemical characteristics are the same as the order Haloferacales.

<span class="mw-page-title-main">Erwiniaceae</span> Family of bacteria

The Erwiniaceae are a family of Gram-negative bacteria which includes a number of plant pathogens and insect endosymbionts. This family is a member of the order Enterobacterales in the class Gammaproteobacteria of the phylum Pseudomonadota. The type genus of this family is Erwinia.

Schinkia is a genus of Gram-positive rod-shaped bacteria in the family Bacillaceae from the order Bacillales. The type species of this genus is Schinkia azotoformans.

The Eggerthellaceae are a family of Gram-positive, rod- or coccus-shaped Actinomycetota. It is the sole family within the order Eggerthellales.

Natrialbales is an order of halophilic, chemoorganotrophic archaea within the class Haloarchaea. The type genus of this order is Natrialba.

Haloferacales is an order of halophilic, chemoorganotrophic or heterotrophic archaea within the class Haloarchaea. The type genus of this order is Haloferax.

Halorubraceae is a family of halophilic, chemoorganotrophic or heterotrophic archaea within the order Haloferacales. The type genus of this family is Halorubrum. Its biochemical characteristics are the same as the order Haloferacales.

Haloarculaceae is a family of halophilic and mostly chemoorganotrophic archaea within the order Halobacteriales. The type genus of this family is Haloarcula. Its biochemical characteristics are the same as the order Halobacteriales.

References

  1. 1 2 Gupta, Radhey S.; Naushad, Sohail; Fabros, Reena; Adeolu, Mobolaji (2016-02-02). "A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov". Antonie van Leeuwenhoek. 109 (4): 565–587. doi:10.1007/s10482-016-0660-2. ISSN   0003-6072. PMID   26837779. S2CID   254231068.
  2. Grant, William D.; Kamekura, Masahiro; McGenity, Terry J.; Ventosa, Antonio (2015-09-14). "Halobacteria class. nov". Bergey's Manual of Systematics of Archaea and Bacteria: 1. doi:10.1002/9781118960608.cbm00026. ISBN   9781118960608.
  3. Oren, Aharon (2012-02-01). "Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics". International Journal of Systematic and Evolutionary Microbiology. 62 (2): 263–271. doi: 10.1099/ijs.0.038653-0 . ISSN   1466-5026. PMID   22155757.
  4. 1 2 "Family: Halococcaceae". lpsn.dsmz.de. Retrieved 2021-06-27.