Honeywell RQ-16 T-Hawk

Last updated
RQ-16 T-Hawk
MicroAirVehicle.jpg
RQ-16 T-Hawk
RoleSurveillance UAV
National origin United States
Manufacturer Honeywell
Primary user United States Army

The Honeywell RQ-16A T-Hawk (for "Tarantula hawk", a wasp species) is a ducted fan VTOL miniature UAV. Developed by Honeywell, it is suitable for backpack deployment and single-person operation.

Contents

Development

The Micro Air Vehicle (MAV) program was launched by DARPA. Following a $40 million technology demonstration contract to Honeywell Defense and Space Electronic Systems in 2003, the MAV project was transferred to United States Army's Future Combat System (FCS) program to fulfill the need for Class I platoon-level drone. In May 2006, Honeywell was awarded a $61 million contract to develop an advanced MAV with extended endurance and heavy-fuel engine. [1] [2]

In 2007, the United States Navy awarded Honeywell a $7.5 million contract for 20 G-MAVs (denoting the use of a gasoline engine) for deployment to Iraq with the U.S. Multi-Service Explosive Ordnance Disposal Group. The hovering feature of MAV has been critical for U.S. forces in Iraq that search for roadside bombs. Military convoys have been using MAVs to fly ahead and scan the roads. A MAV's benefit is its ability to inspect a target — a suspicious vehicle, structure, or disturbed earth — from close range, covering ground much more quickly than an unmanned ground vehicle and without putting people at risk. [3] [4]

RQ-16 in use on the field Class1Soldiers2.jpg
RQ-16 in use on the field

The Iraq trials were so successful that the U.S. Navy placed a surprise order for 372 MAVs, designated RQ-16A T-Hawk, in January 2008 for Explosive Ordnance Disposal (EOD) teams. [5] The 186 MAV systems each consist of two air vehicles and one ground station. In January 2009, the United Kingdom was reported to have ordered five complete T-Hawk systems for delivery by 2010. [6] In April 2010, Honeywell conducted demonstrations of the T-Hawk's at the Counter Terrorism and Jungle Warfare College, Kanker, Chhattisgarh. As a result, Indian security forces are set to conduct user trials. [7]

Design

The gasoline engine powered RQ-16 is reported to weigh 8.4 kilograms (20 lb), have an endurance of around 40 minutes, 10,500-foot (3,200 m) ceiling and an operating radius of about 6 nautical miles (11  km ). Forward speeds up to 70 knots (130 km/h) have been achieved, but the G-MAV is operationally restricted to 50 knots (93 km/h) by software. VTOL operation is subject to a maximum wind speed of 15 knots (28 km/h). Sensors include one forward and one downward looking daylight or IR cameras.

U.S. Army service

Designated XM156 (or Class I) by the United States Army, the aircraft was intended to provide the dismounted soldier with Reconnaissance, Surveillance, and Target Acquisition (RSTA) and laser designation. Total system weight, which includes the air vehicle, a control device, and ground support equipment is less than 51 pounds (23 kg) and is back-packable in two custom MOLLE-type carriers.

Portable in two backpacks XM156 Class I UAV backpack.jpg
Portable in two backpacks

This micro air vehicle operates in open, rolling, complex and urban terrains with a vertical take-off and landing capability. It was interoperable with select ground and air platforms and controlled by mounted or dismounted soldiers. The Class I used autonomous flight and navigation, but it would interact with the network and soldier to dynamically update routes and target information. It provided dedicated reconnaissance support and early warning to the smallest echelons of the Brigade Combat Team (BCT) in environments not suited to larger assets.

The Class I system provided a hover and stare capability that was not available in the Army UAV inventory for urban and route surveillance. The Class I system also filled known gaps that existed in force operations, such as: Protect Force in Counterinsurgency (COIN) Operations, Soldier Protection in COIN environment, Ability to Conduct Joint Urban Operations, Enhanced ISR/RSTA Capabilities, Hover and Stare operations.

The Class I UAV was part of Spin Out 1 and entered evaluation by Soldiers at the Army Evaluation Task Force (AETF). It was to be fielded to Infantry Brigade Combat Teams (IBCT) starting in 2011. However, the Army issued Honeywell a stop-work order on January 6, 2011, with formal termination on February 3 the following month. Its role has gone to the Puma AE. [8]

Continued service

T-hawk of Britain's Talisman counter-IED force, 2012 T-Hawk Remotely Piloted Air System in Afghanistan MOD 45156607.jpg
T-hawk of Britain's Talisman counter-IED force, 2012

On September 19, 2012, Honeywell was awarded a support contract for the RQ-16B Block II T-Hawk. Despite the Class I UAV program being cancelled, RQ-16s are still being used in the field in Afghanistan. [9]

As of 25 October 2013, the British Army has 18 T-Hawks in service [10] as part of its Talisman suite of counter-IED tools. 15 Field Support Squadron of 21 Engineer Regiment were the first troops to use Talisman operationally, in Afghanistan in 2010. [11]

Civilian application at disaster site

On Friday, April 15, 2011, a T-hawk drone was used to conduct surveillance of the damaged Fukushima Dai-Ichi nuclear power station. This nuclear plant suffered severe damage as a result of a devastating earthquake and tsunami which struck the east coast of Japan one month earlier. The damage resulted in several of the reactors at the facility undergoing partial meltdown, releasing radioactivity into the local area. The radiation was thousands of times above the safe limit for exposure, making the area unsafe for human habitation. The radiation was intense enough to make even short-term exposure hazardous, preventing people from going in to assess the damage. The T-hawk drone took numerous photographs of the damaged reactor housings, turbine buildings, spent nuclear fuel rod containment pools, and associated facilities damaged by the earthquake, tsunami, and subsequent hydrogen gas explosions at the facility. This allowed Tokyo Electric Power Co. (TEPCO) to better determine where the releases of radioactivity were coming from and how to best deal with them.

On Friday, June 24, 2011, a T-Hawk apparently crash-landed on the roof of the number 2 reactor building at Fukushima. [12]

Specifications (approximate)

Data from Honeywell T Hawk Described [13]

General characteristics

Performance

See also

Related Research Articles

<span class="mw-page-title-main">Northrop Grumman RQ-4 Global Hawk</span> Unmanned surveillance aircraft

The Northrop Grumman RQ-4 Global Hawk is a high-altitude, remotely-piloted surveillance aircraft of the 1990s–2020s. It was initially designed by Ryan Aeronautical, and known as Tier II+ during development. The RQ-4 provides a broad overview and systematic surveillance using high-resolution synthetic aperture radar (SAR) and electro-optical/infrared (EO/IR) sensors with long loiter times over target areas. It can survey as much as 40,000 square miles (100,000 km2) of terrain per day, an area the size of South Korea or Iceland.

<span class="mw-page-title-main">AAI RQ-2 Pioneer</span> Type of aircraft

The AAI RQ-2 Pioneer is an unmanned aerial vehicle (UAV) that had been used by the United States Navy, Marine Corps, and Army, and deployed at sea and on land from 1986 until 2007. Initially tested aboard USS Iowa, the RQ-2 Pioneer was placed aboard Iowa-class battleships to provide gunnery spotting, its mission evolving into reconnaissance and surveillance, primarily for amphibious forces.

<span class="mw-page-title-main">IAI RQ-5 Hunter</span> Type of aircraft

The IAI RQ-5 Hunter unmanned aerial vehicle (UAV) was originally intended to serve as the United States Army's Short Range UAV system for division and corps commanders. It took off and landed on runways. It used a gimbaled EO/IR sensor to relay its video in real time via a second airborne Hunter over a C-band line-of-sight data link. The RQ-5 is based on the Hunter UAV that was developed by Israel Aerospace Industries.

<span class="mw-page-title-main">AAI RQ-7 Shadow</span> American unmanned aerial vehicle

The AAI RQ-7 Shadow is an American unmanned aerial vehicle (UAV) used by the United States Army, Australian Army, Swedish Army, Turkish Air Force and Italian Army for reconnaissance, surveillance, target acquisition and battle damage assessment. Launched from a trailer-mounted pneumatic catapult, it is recovered with the aid of arresting gear similar to jets on an aircraft carrier. Its gimbal-mounted, digitally stabilized, liquid nitrogen-cooled electro-optical/infrared (EO/IR) camera relays video in real time via a C-band line-of-sight data link to the ground control station (GCS).

<span class="mw-page-title-main">Micro air vehicle</span> Class of very small unmanned aerial vehicle

A micro air vehicle (MAV), or micro aerial vehicle, is a class of miniature UAVs that has a size restriction and may be autonomous. Modern craft can be as small as 5 centimeters. Development is driven by commercial, research, government, and military purposes; with insect-sized aircraft reportedly expected in the future. The small craft allows remote observation of hazardous environments inaccessible to ground vehicles. MAVs have been built for hobby purposes, such as aerial robotics contests and aerial photography.

<span class="mw-page-title-main">Miniature UAV</span> Unmanned aerial vehicle small enough to be man-portable

A miniature UAV, small UAV (SUAV), or drone is an unmanned aerial vehicle small enough to be man-portable. Smallest UAVs are called micro air vehicle.

<span class="mw-page-title-main">AeroVironment RQ-11 Raven</span> Family of unmanned reconnaissance aircraft

The AeroVironment RQ-11 Raven is a small hand-launched remote-controlled unmanned aerial vehicle developed for the United States military, but now adopted by the military forces of many other countries.

<span class="mw-page-title-main">Boeing A160 Hummingbird</span> Unmanned aerial vehicle by Boeing

The Boeing A160 Hummingbird is an unmanned aerial vehicle (UAV) helicopter. Its design incorporates many new technologies never before used in helicopters, allowing for greater endurance and altitude than any helicopter currently in operation.

<span class="mw-page-title-main">General Atomics MQ-1C Gray Eagle</span> Unmanned reconnaissance and strike aircraft system

The General Atomics MQ-1C Gray Eagle is a medium-altitude, long-endurance (MALE) unmanned aircraft system (UAS). It was developed by General Atomics Aeronautical Systems (GA-ASI) for the United States Army as an upgrade of the General Atomics MQ-1 Predator.

<span class="mw-page-title-main">DRDO Nishant</span> Type of aircraft

The DRDO Nishant is an unmanned aerial vehicle (UAV) developed by India's Aeronautical Development Establishment (ADE), a branch of Defence Research and Development Organisation (DRDO) for the Indian Armed Forces. The Nishant UAV is primarily tasked with intelligence gathering over enemy territory and also for reconnaissance, training, surveillance, target designation, artillery fire correction, damage assessment, ELINT and SIGINT. The UAV has an endurance of four hours and thirty minutes. Nishant has completed development phase and user trials.

The U.S. Department of Defense (DoD) employs Unmanned Aerial Systems (UAS) across all echelons to support tactical, operational, and strategic operations. The types of UAS that are used in these operations are categorized into "Groups" according to their size and capability. Previous to 2010, UAS were categorized into "Tiers" or "Classes" separately by each branch of the military. In order to promote a homogeneous categorization, the "group system" was developed.

<span class="mw-page-title-main">Elbit Skylark</span> Type of aircraft

The Elbit Systems Skylark I and Skylark II are miniature UAVs developed by Elbit Systems. Initial models of the Skylark entered service in 2008.

<span class="mw-page-title-main">AeroVironment Wasp III</span> Unmanned aerial vehicle (UAV) developed for United States Air Force special forces

The AeroVironment Wasp III Small Unmanned Aircraft System is a miniature UAV developed for United States Air Force special operations to provide a small, light-weight vehicle to provide beyond-line-of-sight situation awareness. The aircraft is equipped with two on-board cameras to provide real-time intelligence to its operators. It is also equipped with GPS and an Inertial Navigation System enabling it to operate autonomously from takeoff to recovery. It was designed by AeroVironment Inc., and was first added to the Air Force inventory in 2007. There are two Wasp variants: the traditional version that lands on land, and a version that lands into the sea or fresh water. The Air Force accepted the Wasp AE in late May 2012, and the U.S. Marine Corps revealed in January 2013 that they had ordered the Wasp AE. The Wasp AE is designated as the RQ-12A.

FCS/BCT unmanned aerial vehicles was a collection of unmanned aerial vehicles developed under the jurisdiction of the Future Combat Systems (FCS) program until it was dissolved and succeeded by the BCT Modernization program.

<span class="mw-page-title-main">AeroVironment RQ-20 Puma</span> Type of aircraft

The AeroVironment RQ-20 Puma is an American unmanned aircraft system which is small, battery powered, and hand-launched. Its primary mission is surveillance and intelligence gathering using an electro-optical and infrared camera. It is produced by AeroVironment.

The GIDS Uqab is a tactical unmanned reconnaissance aerial vehicle built and developed by the Global Industrial Defence Solutions (GIDS) for the joint drone program of the Pakistan Navy and Pakistan Army. The Uqab is a tactical system which can be used for damage assessment, reconnaissance operations, artillery fire corrections, and can perform other variety of security and military operations.

<span class="mw-page-title-main">Tactical Robotics Cormorant</span> Type of aircraft

The Tactical Robotics Cormorant, formerly AirMule or Mule, Israel Defense Forces (IDF) codename Pereira, is a flying car unmanned aerial vehicle (UAV) built by Tactical Robotics Ltd., a subsidiary of designer Rafi Yoeli's Urban Aeronautics Ltd., in Yavne, Israel. It will be used in search and rescue operations where it is too dangerous or inaccessible for a helicopter, such as evacuating people from the upper stories of burning buildings, or delivering and extracting police and soldiers while very close to structures, narrow streets, or through holes into confined spaces.

<span class="mw-page-title-main">Unmanned aerial vehicles in the United States military</span>

As of January 2014, the United States military operates a large number of unmanned aerial vehicles : 7,362 RQ-11 Ravens; 990 AeroVironment Wasp IIIs; 1,137 AeroVironment RQ-20 Pumas; 306 RQ-16 T-Hawk small UAS systems; 246 MQ-1 Predators; MQ-1C Gray Eagles; 126 MQ-9 Reapers; 491 RQ-7 Shadows; and 33 RQ-4 Global Hawk large systems.

References

  1. Braybrook, Roy (June 2008). "United States Fly High" (PDF). Armada International. Archived from the original (PDF) on 2008-12-03. Retrieved 2008-07-31.
  2. "Jane's Helicopter Markets and Systems". Jane's Information Group. July 21, 2008. Archived from the original on January 3, 2013. Retrieved 2008-07-31.
  3. Wagner, Breanne (March 2008). "Demand on the Rise for Small Hovering Drones". National Defense. Retrieved 2008-07-31.[ dead link ]
  4. Eshel, David (May 15, 2008). "Mini-UAVs rack up big gains". Defense Technology International. Archived from the original on July 22, 2011. Retrieved 2008-07-31.
  5. Trimble, Stephen (January 25, 2008). "US Navy unveils surprise order for ducted-fan UAVs". Flight International . Retrieved 2008-07-31.
  6. Fabey, Michael. "Ares". Aviation Week. Retrieved 2015-05-09.
  7. "Defense19". India-defence.com. Retrieved 2015-05-09.
  8. "BCTM/E-IBCT: FCS Spinout Ramps up, Then Breaks Up". Defenseindustrydaily.com. 2011-09-14. Retrieved 2015-05-09.
  9. "RQ-16: Future Combat Systems' Last UAV Survivor Falls". Defenseindustrydaily.com. 2012-09-19. Retrieved 2015-05-09.
  10. "Unmanned Taranis has flown, MoD reveals - 10/25/2013". Flightglobal.com. 2013-10-25. Retrieved 2015-05-09.
  11. "'Flying Robot' pilot helps find IEDs in Helmand - Announcements". GOV.UK. 2010-08-11. Retrieved 2015-05-09.
  12. "Drone Aircraft At Fukushima Plant Loses Control, Lands On Reactor Building". Dow Jones. 24 June 2011. Archived from the original on 2011-08-23. Retrieved 2011-06-24.
  13. Ihlein, John. "Honeywell T Hawk Described". YouTube . Archived from the original on 2021-12-21.