Hydroxymethylglutaryl-CoA reductase (NADPH)

Last updated
hydroxymethylglutaryl-CoA reductase (NADPH)
1dqa.jpg
HMG-CoA reductase tetramer, Human
Identifiers
EC no. 1.1.1.34
CAS no. 9028-35-7
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a hydroxymethylglutaryl-CoA reductase (NADPH) (EC 1.1.1.34) is an enzyme that catalyzes the chemical reaction

Contents

(R)-mevalonate + CoA + 2 NADP+ (S)-3-hydroxy-3-methylglutaryl-CoA + 2 NADPH + 2 H+

The 3 substrates of this enzyme are (R)-mevalonate, CoA, and NADP+, whereas its 3 products are (S)-3-hydroxy-3-methylglutaryl-CoA, NADPH, and H+.

This enzyme belongs to the family of oxidoreductases, to be specific those acting on the CH-OH group of donor with NAD+ or NADP+ as acceptor. This enzyme participates in biosynthesis of steroids including cholesterol. The statin class of anticholesterol drugs act through inhibiting this enzyme.

Nomenclature

The systematic name of this enzyme class is (R)-mevalonate:NADP+ oxidoreductase (CoA-acylating). Other names in common use include:

Structural studies

As of late 2007, 12 structures have been solved for this class of enzymes, with PDB accession codes 1DQ8, 1DQ9, 1DQA, 1HW8, 1HW9, 1HWI, 1HWJ, 1HWK, 1HWL, 2Q1L, 2Q6B, and 2Q6C.

Related Research Articles

<span class="mw-page-title-main">Lovastatin</span> Chemical compound

Lovastatin, sold under the brand name Mevacor among others, is a statin medication, to treat high blood cholesterol and reduce the risk of cardiovascular disease. Its use is recommended together with lifestyle changes. It is taken by mouth.

<span class="mw-page-title-main">Feodor Lynen</span> German biochemist, Nobel Laureate

Feodor Felix Konrad Lynen was a German biochemist. In 1964 he won the Nobel Prize in Physiology or Medicine together with Konrad Bloch for their discoveries concerning the mechanism and regulation of cholesterol and fatty acid metabolism while he was director of the Max-Planck Institute for Cellular Chemistry in Munich.

<span class="mw-page-title-main">HMG-CoA reductase</span> Mammalian protein found in Homo sapiens

HMG-CoA reductase is the rate-controlling enzyme of the mevalonate pathway, the metabolic pathway that produces cholesterol and other isoprenoids. HMGCR catalyzes the conversion of HMG-CoA to mevalonic acid, a necessary step in the biosynthesis of cholesterol. Normally in mammalian cells this enzyme is competitively suppressed so that its effect is controlled. This enzyme is the target of the widely available cholesterol-lowering drugs known collectively as the statins, which help treat dyslipidemia.

In enzymology, a Hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">HMG-CoA</span> Chemical compound

β-Hydroxy β-methylglutaryl-CoA (HMG-CoA), also known as 3-hydroxy-3-methylglutaryl coenzyme A, is an intermediate in the mevalonate and ketogenesis pathways. It is formed from acetyl CoA and acetoacetyl CoA by HMG-CoA synthase. The research of Minor J. Coon and Bimal Kumar Bachhawat in the 1950s at University of Illinois led to its discovery.

<span class="mw-page-title-main">Acetoacetyl-CoA</span> Chemical compound

Acetoacetyl CoA is the precursor of HMG-CoA in the mevalonate pathway, which is essential for cholesterol biosynthesis. It also takes a similar role in the ketone bodies synthesis (ketogenesis) pathway of the liver. In the ketone bodies digestion pathway, it is no longer associated with having HMG-CoA as a product or as a reactant.

<span class="mw-page-title-main">Acetoacetyl-CoA reductase</span> InterPro Family

In enzymology, an acetoacetyl-CoA reductase (EC 1.1.1.36) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Carbonyl reductase (NADPH)</span> Class of enzymes

In enzymology, a carbonyl reductase (NADPH) (EC 1.1.1.184) is an enzyme that catalyzes the chemical reaction

In enzymology, a cholest-5-ene-3β,7α-diol 3β-dehydrogenase (EC 1.1.1.181) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Glycerate dehydrogenase</span>

In enzymology, a glycerate dehydrogenase (EC 1.1.1.29) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Acyl-CoA dehydrogenase (NADP+)</span> Class of enzymes

In enzymology, an acyl-CoA dehydrogenase (NADP+) (EC 1.3.1.8) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Isovaleryl-CoA dehydrogenase</span>

In enzymology, an isovaleryl-CoA dehydrogenase is an enzyme that catalyzes the chemical reaction

The discovery of HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase inhibitors, called statins, was a breakthrough in the prevention of hypercholesterolemia and related diseases. Hypercholesterolemia is considered to be one of the major risk factors for atherosclerosis which often leads to cardiovascular, cerebrovascular and peripheral vascular diseases. The statins inhibit cholesterol synthesis in the body and that leads to reduction in blood cholesterol levels, which is thought to reduce the risk of atherosclerosis and diseases caused by it.

In enzymology, a CoA-glutathione reductase (EC 1.8.1.10) is an enzyme that catalyzes the chemical reaction

In enzymology, a N-hydroxy-2-acetamidofluorene reductase (EC 1.7.1.12) is an enzyme that catalyzes the chemical reaction

The enzyme [hydroxymethylglutaryl-CoA reductase (NADPH)]-phosphatase (EC 3.1.3.47) catalyzes the reaction

<span class="mw-page-title-main">Hydroxymethylglutaryl-CoA synthase</span> Class of enzymes

In biochemistry, hydroxymethylglutaryl-CoA synthase or HMG-CoA synthase EC 2.3.3.10 is an enzyme which catalyzes the reaction in which acetyl-CoA condenses with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). This reaction comprises the second step in the mevalonate-dependent isoprenoid biosynthesis pathway. HMG-CoA is an intermediate in both cholesterol synthesis and ketogenesis. This reaction is overactivated in patients with diabetes mellitus type 1 if left untreated, due to prolonged insulin deficiency and the exhaustion of substrates for gluconeogenesis and the TCA cycle, notably oxaloacetate. This results in shunting of excess acetyl-CoA into the ketone synthesis pathway via HMG-CoA, leading to the development of diabetic ketoacidosis.

In enzymology, a dephospho-[reductase kinase] kinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">HMG-CoA reductase family</span>

In molecular biology, the HMG-CoA reductase family is a family of enzymes which participate in the mevalonate pathway, the metabolic pathway that produces cholesterol and other isoprenoids.

In enzymology, a prostaglandin-F synthase (PGFS; EC 1.1.1.188) is an enzyme that catalyzes the chemical reaction:

References