Hydroxypyruvate reductase

Last updated
hydroxypyruvate reductase
Identifiers
EC no. 1.1.1.81
CAS no. 9059-44-3
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a hydroxypyruvate reductase (EC 1.1.1.81) is an enzyme that catalyzes the chemical reaction

D-glycerate + NAD(P)+ hydroxypyruvate + NAD(P)H + H+

The 3 substrates of this enzyme are D-glycerate, NAD+, and NADP+, whereas its 4 products are hydroxypyruvate, NADH, NADPH, and H+.

This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is D-glycerate:NADP+ 2-oxidoreductase. Other names in common use include beta-hydroxypyruvate reductase, NADH:hydroxypyruvate reductase, and D-glycerate dehydrogenase. This enzyme participates in glycine, serine and threonine metabolism and glyoxylate and dicarboxylate metabolism.

See also

Related Research Articles

A dehydrogenase is an enzyme belonging to the group of oxidoreductases that oxidizes a substrate by reducing an electron acceptor, usually NAD+/NADP+ or a flavin coenzyme such as FAD or FMN. Like all catalysts, they catalyze reverse as well as forward reactions, and in some cases this has physiological significance: for example, alcohol dehydrogenase catalyzes the oxidation of ethanol to acetaldehyde in animals, but in yeast it catalyzes the production of ethanol from acetaldehyde.

<span class="mw-page-title-main">Nicotinamide adenine dinucleotide phosphate</span> Chemical compound

Nicotinamide adenine dinucleotide phosphate, abbreviated NADP+ or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require NADPH as a reducing agent ('hydrogen source'). NADPH is the reduced form of NADP+, the oxidized form. NADP+ is used by all forms of cellular life.

<span class="mw-page-title-main">Shikimate dehydrogenase</span> Enzyme involved in amino acid biosynthesis

In enzymology, a shikimate dehydrogenase (EC 1.1.1.25) is an enzyme that catalyzes the chemical reaction

In enzymology, an alcohol dehydrogenase [NAD(P)+] (EC 1.1.1.71) is an enzyme that catalyzes the chemical reaction

In enzymology, a glucuronate reductase (EC 1.1.1.19) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Glycerate dehydrogenase</span>

In enzymology, a glycerate dehydrogenase (EC 1.1.1.29) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Glyoxylate reductase</span> Enzyme

Glyoxylate reductase, first isolated from spinach leaves, is an enzyme that catalyzes the reduction of glyoxylate to glycolate, using the cofactor NADH or NADPH.

In enzymology, a glyoxylate reductase (NADP+) (EC 1.1.1.79) is an enzyme that catalyzes the chemical reaction

In enzymology, a mannuronate reductase (EC 1.1.1.131) is an enzyme that catalyzes the chemical reaction

In enzymology, an oxaloglycolate reductase (decarboxylating) (EC 1.1.1.92) is an enzyme that catalyzes the chemical reaction

In enzymology, a tropinone reductase I (EC 1.1.1.206) is an enzyme that catalyzes the chemical reaction

In enzymology, a tropinone reductase II (EC 1.1.1.236) is an enzyme that catalyzes the chemical reaction

In enzymology, a 2-hydroxy-3-oxopropionate reductase (EC 1.1.1.60) is an enzyme that catalyzes the chemical reaction

In enzymology, an orotate reductase (NADPH) (EC 1.3.1.15) is an enzyme that catalyzes the chemical reaction

In enzymology, an aldehyde dehydrogenase [NAD(P)+] (EC 1.2.1.5) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">L-aminoadipate-semialdehyde dehydrogenase</span>

In enzymology, a L-aminoadipate-semialdehyde dehydrogenase (EC 1.2.1.31) is an enzyme that catalyzes the chemical reaction

In enzymology, a mycothiol-dependent formaldehyde dehydrogenase (EC 1.1.1.306) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">6,7-dihydropteridine reductase</span> Class of enzymes

In enzymology, 6,7-dihydropteridine reductase (EC 1.5.1.34, also Dihydrobiopterin reductase) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NAD(P)H dehydrogenase (quinone)</span>

In enzymology, a NAD(P)H dehydrogenase (quinone) (EC 1.6.5.2) is an enzyme that catalyzes the chemical reaction

In enzymology, a nitrite reductase [NAD(P)H] (EC 1.7.1.4) is an enzyme that catalyzes the chemical reaction

References