Hysteroscopy

Last updated
Hysteroscopy
Hysteroscopy.png
Anatomic depiction of a modern hysteroscopic procedure
ICD-9-CM 68.12
MeSH D015907
OPS-301 code 1-672

Hysteroscopy is the inspection of the uterine cavity by endoscopy with access through the cervix. It allows for the diagnosis of intrauterine pathology and serves as a method for surgical intervention (operative hysteroscopy).

Contents

Hysteroscope

A hysteroscope is an endoscope that carries optical and light channels or fibers. It is introduced in a sheath that provides an inflow and outflow channel for insufflation of the uterine cavity. In addition, an operative channel may be present to introduce scissors, graspers or biopsy instruments. [1] A hysteroscopic resectoscope is similar to a transurethral resectoscope and allows entry of an electric loop to shave off tissue, for instance to eliminate a fibroid. [1] [2] A contact hysteroscope is a hysteroscope that does not use distention media.

Procedure

Hysteroscopy has been carried out in hospitals, surgical centers and doctors' offices. It is best carried out when the endometrium is relatively thin, that is after a menstruation. Both diagnostic and simple operative hysteroscopy can be carried out in an office or clinic setting on suitably selected patients. Local anesthesia can be used. Analgesics are not always necessary. A paracervical block may be achieved using a lidocaine injection in the upper part of the cervix. Hysteroscopic intervention can also be done under general anesthesia (endotracheal or laryngeal mask) or monitored anesthesia care (MAC). Prophylactic antibiotics are not necessary. The patient is in a lithotomy position during the procedure. [3]

Cervical dilation

The diameter of the modern hysteroscope is generally small enough to conveniently pass the cervix directly. For a proportion of women cervical dilation may need to be performed prior to insertion. Cervical dilation can be performed by temporarily stretching the cervix with a series of dilators of increasing diameter. [4] Misoprostol prior to hysteroscopy for cervical dilation appears to facilitate an easier and uncomplicated procedure only in premenopausal women. [5]

Insertion and inspection

The hysteroscope with its sheath is inserted transvaginally guided into the uterine cavity, the cavity insufflated, and an inspection is performed.[ citation needed ]

Insufflation media

The uterine cavity is a potential cavity and needs to be distended to allow for inspection. Thus, during hysteroscopy, either fluids or CO2 gas is introduced to expand the cavity. The choice is dependent on the procedure, the patient's condition, and the physician's preference. Fluids can be used for both diagnostic and operative procedures. However, CO2 gas does not allow the clearing of blood and endometrial debris during the procedure, which could make the imaging visualization difficult. Gas embolism may also arise as a complication. Since the success of the procedure is totally dependent on the quality of the high-resolution video images in front of the surgeon's eyes, CO2 gas is not commonly used as the distention medium.[ citation needed ]

Electrolytic solutions include normal saline and lactated Ringer's solution. Current recommendation is to use the electrolytic fluids in diagnostic cases, and in operative cases in which mechanical, laser, or bipolar energy is used. Since they conduct electricity, these fluids should not be used with monopolar electrosurgical devices. Non-electrolytic fluids eliminate problems with electrical conductivity, but can increase the risk of hyponatremia. These solutions include glucose, glycine, dextran (Hyskon), mannitol, sorbitol and a mannitol/sorbital mixture (Purisol). Water was once used routinely, however, problems with water intoxication and hemolysis discontinued its use by 1990. Each of these distention fluids is associated with unique physiological changes that should be considered when selecting a distention fluid. Glucose is contraindicated in patients with glucose intolerance. Sorbitol metabolizes to fructose in the liver and is contraindicated if a patient has fructose malabsorption.[ citation needed ]

High-viscous Dextran also has potential complications which can be physiological and mechanical. It may crystallize on instruments and obstruct the valves and channels. Coagulation abnormalities and adult respiratory distress syndrome (ARDS) have been reported. Glycine metabolizes into ammonia and can cross the blood brain barrier, causing agitation, vomiting and coma. Mannitol 5% should be used instead of glycine or sorbitol when using monopolar electrosurgical devices. Mannitol 5% has a diuretic effect and can also cause hypotension and circulatory collapse. The mannitol/sorbitol mixture (Purisol) should be avoided in patients with fructose malabsorption.

When fluids are used to distend the cavity, care should be taken to record its use (inflow and outflow) to prevent fluid overload and intoxication of the patient. [6]

Interventional procedures

If abnormalities are found, an operative hysteroscope with a channel to allow specialized instruments to enter the cavity is used to perform the surgery. Typical procedures include endometrial ablation, submucosal fibroid resection, and endometrial polypectomy. Hysteroscopy has also been used to apply the Nd:YAG laser treatment to the inside of the uterus. [7] Methods of tissue removal now include electrocautery bipolar loop resection, and morcellation. [8]

Indications

View of a submucous fibroid by hysteroscopy Myoma.jpg
View of a submucous fibroid by hysteroscopy

Hysteroscopy is useful in a number of uterine conditions:

The use of hysteroscopy in endometrial cancer is not established as there is concern that cancer cells could be spread into the peritoneal cavity. [12]

Hysteroscopy has the benefit of allowing direct visualization of the uterus, thereby avoiding or reducing iatrogenic trauma to delicate reproductive tissue which may result in Asherman's syndrome.

Hysteroscopy allows access to the uterotubal junction for entry into the fallopian tube; this is useful for tubal occlusion procedures for sterilization and for falloposcopy.

Complications

A possible problem is uterine perforation when either the hysteroscope itself or one of its operative instruments breaches the wall of the uterus. This can lead to bleeding and damage to other organs. If other organs such as bowel are injured during a perforation, the resulting peritonitis can be fatal. Furthermore, cervical laceration, intrauterine infection (especially in prolonged procedures), electrical and laser injuries, and complications caused by the distention media can be encountered.[ citation needed ]

The use of insufflation (also called distending) media can lead to serious and even fatal complications due to embolism or fluid overload with electrolyte imbalances. [1] [6] Particularly the electrolyte-free insufflation media increase the risk of fluid overload with electrolyte imbalances, particularly hyponatremia, heart failure as well as pulmonary and cerebral edema. The main factors contributing to fluid overload in hysteroscopy are: [13]

Women in fertile age are at increased risk of resultant hyponatremic encephalopathy, likely because of increased level of estrogens. [13]

The overall complication rate for diagnostic and operative hysteroscopy was 2% with serious complications occurring in less than 1% of cases using older methods. [1] Morcellation has fewer complications than electrocautery, less than 0.1%. [14] [15]

Severe pain

The English Member of Parliament, Lyn Brown (West Ham, Labour), has spoken twice in the House of Commons on behalf of constituents who have been coerced into completing unbearably painful outpatient hysteroscopies without anaesthesia. Lyn Brown cites numerous instances of women throughout England being held down by nurses in order to complete an ambulatory hysteroscopy and thus avoid the expense of safely monitored sedation or general anaesthetic. [16] A petition to grant NHS patients full information about the risks of severe outpatient hysteroscopy pain, and the upfront choice of local anaesthetic, sedation, epidural or general anaesthetic was launched in summer 2018. 'End barbaric NHS hysteroscopies with inadequate pain-relief'. It asks the Secretary of State for Health to ensure that:

  1. All NHS hysteroscopists have advanced training in pain medicine.
  2. All hysteroscopy patients receive full written information before the procedure, listing the risks and benefits and explaining that local anaesthetic may be painful and ineffective against the severe pain of cervical dilation, womb distension and biopsy.
  3. All hysteroscopy services are adequately funded so that BEFORE their procedures patients may choose no anaesthesia/ local anaesthesia/ safely monitored conscious sedation/ epidural/ general anaesthetic.
  4. The Best Practice Tariff financial incentive, which rewards NHS Trusts who perform a high percentage of hysteroscopies in outpatients without a trained anaesthetist, is abolished.

See also

Related Research Articles

Dilationand curettage (D&C) refers to the dilation of the cervix and surgical removal of sections and or layers of the lining of the uterus and or contents of the uterus such as an unwanted fetus, remains of a non viable fetus, retained placenta after birth or abortion as well as any abnormal tissue which may be in the uterus causing abnormal cycles by scraping and scooping (curettage). It is a gynecologic procedure used for treatment and removal as well as diagnostic and therapeutic purposes, and is the most commonly used method for first trimester abortion or miscarriage.

<span class="mw-page-title-main">Uterus</span> Female sex organ in mammals

The uterus or womb is the organ in the reproductive system of most female mammals, including humans, that accommodates the embryonic and fetal development of one or more embryos until birth. The uterus is a hormone-responsive sex organ that contains glands in its lining that secrete uterine milk for embryonic nourishment.

<span class="mw-page-title-main">Asherman's syndrome</span> Medical condition

Asherman's syndrome (AS) is an acquired uterine condition that occurs when scar tissue (adhesions) forms inside the uterus and/or the cervix. It is characterized by variable scarring inside the uterine cavity, where in many cases the front and back walls of the uterus stick to one another. AS can be the cause of menstrual disturbances, infertility, and placental abnormalities. Although the first case of intrauterine adhesion was published in 1894 by Heinrich Fritsch, it was only after 54 years that a full description of Asherman syndrome was carried out by Joseph Asherman. A number of other terms have been used to describe the condition and related conditions including: uterine/cervical atresia, traumatic uterine atrophy, sclerotic endometrium, and endometrial sclerosis.

<span class="mw-page-title-main">Adenomyosis</span> Extension of endometrial tissue into the myometrium

Adenomyosis is a medical condition characterized by the growth of cells that proliferate on the inside of the uterus (endometrium) atypically located among the cells of the uterine wall (myometrium), as a result, thickening of the uterus occurs. As well as being misplaced in patients with this condition, endometrial tissue is completely functional. The tissue thickens, sheds and bleeds during every menstrual cycle.

<span class="mw-page-title-main">Vaginal bleeding</span> Medical condition

Vaginal bleeding is any expulsion of blood from the vagina. This bleeding may originate from the uterus, vaginal wall, or cervix. Generally, it is either part of a normal menstrual cycle or is caused by hormonal or other problems of the reproductive system, such as abnormal uterine bleeding.

<span class="mw-page-title-main">Falloposcopy</span>

Falloposcopy is the inspection of the fallopian tubes through a micro- endoscope. The falloposcope is inserted into the tube through its opening in the uterus at the proximal tubal opening via the uterotubal junction; technically it could also be inserted at the time of abdominal surgery or laparoscopy via the distal fimbriated end.

<span class="mw-page-title-main">Gynecologic ultrasonography</span> Application of medical ultrasonography to the female pelvic organs

Gynecologic ultrasonography or gynecologic sonography refers to the application of medical ultrasonography to the female pelvic organs as well as the bladder, the adnexa, and the recto-uterine pouch. The procedure may lead to other medically relevant findings in the pelvis.This technique is useful to detect myomas or mullerian malformations.

Cervical dilation is the opening of the cervix, the entrance to the uterus, during childbirth, miscarriage, induced abortion, or gynecological surgery. Cervical dilation may occur naturally, or may be induced surgically or medically.

<span class="mw-page-title-main">Uterine malformation</span> Female birth defect in which the uterus forms abnormally

A uterine malformation is a type of female genital malformation resulting from an abnormal development of the Müllerian duct(s) during embryogenesis. Symptoms range from amenorrhea, infertility, recurrent pregnancy loss, and pain, to normal functioning depending on the nature of the defect.

<span class="mw-page-title-main">Endometrial polyp</span> Mass on the interior lining of the uterus

An endometrial polyp or uterine polyp is a mass in the inner lining of the uterus. They may have a large flat base (sessile) or be attached to the uterus by an elongated pedicle (pedunculated). Pedunculated polyps are more common than sessile ones. They range in size from a few millimeters to several centimeters. If pedunculated, they can protrude through the cervix into the vagina. Small blood vessels may be present, particularly in large polyps.

<span class="mw-page-title-main">Uterine myomectomy</span> Surgical removal of uterine fibroid

Myomectomy, sometimes also called fibroidectomy, refers to the surgical removal of uterine leiomyomas, also known as fibroids. In contrast to a hysterectomy, the uterus remains preserved and the woman retains her reproductive potential. It still may impact hormonal regulation and the menstrual cycle.

<span class="mw-page-title-main">Vacuum aspiration</span> Gynaecological procedure

Vacuum or suction aspiration is a procedure that uses a vacuum source to remove an embryo or fetus through the cervix. The procedure is performed to induce abortion, as a treatment for incomplete spontaneous abortion or retained fetal and placental tissue, or to obtain a sample of uterine lining. It is generally safe, and serious complications rarely occur.

<span class="mw-page-title-main">Endometrial ablation</span> Medical procedure

Endometrial ablation is a surgical procedure that is used to remove (ablate) or destroy the endometrial lining of the uterus. The goal of the procedure is to decrease the amount of blood loss during menstrual periods. Endometrial ablation is most often employed in people with excessive menstrual bleeding, who do not wish to undergo a hysterectomy, following unsuccessful medical therapy.

<span class="mw-page-title-main">Unicornuate uterus</span> Birth defect in which only one uterine horn fully develops

A unicornuate uterus represents a uterine malformation where the uterus is formed from one only of the paired Müllerian ducts while the other Müllerian duct does not develop or only in a rudimentary fashion. The sometimes called hemi-uterus has a single horn linked to the ipsilateral fallopian tube that faces its ovary.

<span class="mw-page-title-main">Arcuate uterus</span> Concave variant of uterine cavity shape

The arcuate uterus is a form of a uterine anomaly or variation where the uterine cavity displays a concave contour towards the fundus. Normally the uterine cavity is straight or convex towards the fundus on anterior-posterior imaging, but in the arcuate uterus the myometrium of the fundus dips into the cavity and may form a small septation. The distinction between an arcuate uterus and a septate uterus is not standardized.

A uterine septum is a congenital uterine malformation where the uterine cavity is partitioned by a longitudinal septum; the outside of the uterus has a normal typical shape. The wedge-like partition may involve only the superior part of the cavity resulting in an incomplete septum or a subseptate uterus, or less frequently the total length of the cavity and the cervix resulting in a double cervix. The septation may also continue caudally into the vagina resulting in a "double vagina".

Tubal reversal, also called tubal sterilization reversal, tubal ligation reversal, or microsurgical tubal reanastomosis, is a surgical procedure that can restore fertility to women after a tubal ligation. By rejoining the separated segments of the fallopian tube, tubal reversal can give women the chance to become pregnant again. In some cases, however, the separated segments cannot actually be reattached to each other. In some cases the remaining segment of tube needs to be re-implanted into the uterus. In other cases, when the end of the tube has been removed, a procedure called a neofimbrioplasty must be performed to recreate a functional end of the tube which can then act like the missing fimbria and retrieve the egg that has been released during ovulation.

<span class="mw-page-title-main">Hematometra</span> Medical condition

Hematometra is a medical condition involving collection or retention of blood in the uterus. It is most commonly caused by an imperforate hymen or a transverse vaginal septum.

<span class="mw-page-title-main">Osmotic dilator</span> Medical device to dilate the uterine cervix

Osmotic dilators are medical implements used to dilate the uterine cervix by swelling as they absorb fluid from surrounding tissue. They may be composed of natural or synthetic materials. A laminaria stick or tent is a thin rod made of the stems of dried Laminaria, a genus of kelp. Laminaria sticks can be generated from Laminaria japonica and Laminaria digitata. Synthetic osmotic dilators are commonly referred to by their brand names, such as Dilapan. Dilapan-S are composed of polyacrylonitrile, a plastic polymer. The hygroscopic nature of the polymer causes the dilator to absorb fluid and expand.

<span class="mw-page-title-main">Hysterosalpingography</span> X-ray examination of the uterus and fallopian tubes

Hysterosalpingography (HSG), also known as uterosalpingography, is a radiologic procedure to investigate the shape of the uterine cavity and the shape and patency of the fallopian tubes. It is a special x-ray procedure using dye to look at the womb (uterus) and fallopian tubes. In this procedure, a radio-opaque material is injected into the cervical canal, and radiographs are taken. A normal result shows the filling of the uterine cavity and the bilateral filling of the fallopian tube with the injection material. To demonstrate tubal patency, spillage of the material into the peritoneal cavity needs to be observed. Hysterosalpingography has vital role in treatment of infertility, especially in the case of fallopian tube blockage.

References

  1. 1 2 3 4 5 Di Spiezio Sardo A, Mazzon I, Bramante S, Bettocchi S, Bifulco G, Guida M, Nappi C (2008). "Hysteroscopic myomectomy: a comprehensive review of surgical techniques". Hum Reprod Update. 14 (2): 101–19. doi: 10.1093/humupd/dmm041 . PMID   18063608.
  2. 1 2 Nouri K, Ott J, Huber JC, Fischer EM, Stogbauer L, Tempfer CB (2010). "Reproductive outcome after hysteroscopic septoplasty in patients with septate uterus - a retrospective cohort study and systematic review of the literature". Reprod Biol Endocrinol. 8: 52. doi: 10.1186/1477-7827-8-52 . PMC   2885403 . PMID   20492650.
  3. Agostini, A.; Collette, E.; Provansal, M.; Estrade, J. -P.; Blanc, B.; Gamerre, M. (2008). "Bonne pratique et valeur diagnostique de l'hystéroscopie diagnostique et des prélèvement histologiques". Journal de Gynécologie Obstétrique et Biologie de la Reproduction. 37 (8): S343–8. doi:10.1016/S0368-2315(08)74774-4. PMID   19268212.
  4. Laparoscopy and Hysteroscopy. Archived 2020-07-26 at the Wayback Machine A Guide for Patients, Revised 2012. From the American Society for Reproductive Medicine, Patient Education Committee
  5. Polyzos, N. P.; Zavos, A.; Valachis, A.; Dragamestianos, C.; Blockeel, C.; Stoop, D.; Papanikolaou, E. G.; Tournaye, H.; Devroey, P.; Messinis, I. E. (2012). "Misoprostol prior to hysteroscopy in premenopausal and post-menopausal women. A systematic review and meta-analysis". Human Reproduction Update. 18 (4): 393–404. doi: 10.1093/humupd/dms014 . PMID   22544173.
  6. 1 2 Van Kruchten PM, Vermelis JM, Herold I, Van Zundert AA (2010). "Hypotonic and isotonic fluid overload as a complication of hysteroscopic procedures: two case reports". Minerva Anestesiol. 76 (5): 373–7. PMID   20395900.
  7. 1 2 Yang J, Yin TL, Xu WM, Xia LB, Li AB, Hu J (2006). "Reproductive outcome of septate uterus after hysteroscopic treatment with neodymium:YAG laser". Photomed Laser Surg. 24 (5): 625. doi:10.1089/pho.2006.24.625. PMID   17069494.
  8. Smith, Paul P.; Middleton, Lee J.; Connor, Mary; Clark, T. Justin (April 2014). "Hysteroscopic Morcellation Compared With Electrical Resection of Endometrial Polyps". Obstetrics & Gynecology. 123 (4): 745–751. doi:10.1097/AOG.0000000000000187. PMID   24785600. S2CID   42056294.
  9. Yu D, Wong YM, Cheong Y, Xia E, Li TC (2008). "Asherman syndrome--one century later". Fertil. Steril. 89 (4): 759–79. doi: 10.1016/j.fertnstert.2008.02.096 . PMID   18406834.
  10. Papadopoulos NP, Magos A (2007). "First-generation endometrial ablation: roller-ball vs loop vs laser". Best Pract Res Clin Obstet Gynaecol. 21 (6): 915–29. doi:10.1016/j.bpobgyn.2007.03.014. PMID   17459778.
  11. Siegler AM, Kemmann E (1976). "Location and removal of misplaced or embedded intrauterine devices by hysteroscopy". J Reprod Med. 16 (3): 139–44. PMID   943543.
  12. Polyzos NP, Mauri D, Tsioras S, Messini CI, Valachis A, Messinis IE (2010). "Intraperitoneal dissemination of endometrial cancer cells after hysteroscopy: a systematic review and meta-analysis". International Journal of Gynecological Cancer. 20 (2): 261–7. doi:10.1111/IGC.0b013e3181ca2290. PMID   20169669. S2CID   30325169.
  13. 1 2 Munro MG, Storz K, Abbott JA, et al. (2013). "AAGL Practice Report: Practice Guidelines for the Management of Hysteroscopic Distending Media: (Replaces Hysteroscopic Fluid Monitoring Guidelines. J Am Assoc Gynecol Laparosc. 2000;7:167-168.)" (PDF). J Minim Invasive Gynecol. 20 (2): 137–48. doi:10.1016/j.jmig.2012.12.002. PMID   23465255. Archived from the original (PDF) on 2019-06-17. Retrieved 2014-10-12.
  14. Haber, Karina; Hawkins, Eleanor; Levie, Mark; Chudnoff, Scott (January 2015). "Hysteroscopic Morcellation: Review of the Manufacturer and User Facility Device Experience (MAUDE) Database". Journal of Minimally Invasive Gynecology. 22 (1): 110–114. doi:10.1016/j.jmig.2014.08.008. PMID   25128851.Epub 2014 Aug 14
  15. Noventa, M.; Ancona, E.; Quaranta, M.; Vitagliano, A.; Cosmi, E.; D'Antona, D.; Gizzo, S. (14 April 2015). "Intrauterine Morcellator Devices: The Icon of Hysteroscopic Future or Merely a Marketing Image? A Systematic Review Regarding Safety, Efficacy, Advantages, and Contraindications". Reproductive Sciences. 22 (10): 1289–1296. doi:10.1177/1933719115578929. PMID   25878200. S2CID   22970232. Epub 2015 Apr 14
  16. Hansard : 19 December 2013; and • Hansard : 18 December 2014