Kicked rotator

Last updated
Phase portraits (p vs. x) of the classical kicked rotor at different kicking strengths. The top row shows, from left to right, K = 0.5, 0.971635, 1.3. The bottom row shows, from left to right, K = 2.1, 5.0, 10.0. The phase portrait at the chaotic boundary is the upper middle plot, with KC = 0.971635. At and above KC, regions of uniform, grainy-coloured, quasi-random trajectories appear and eventually consume the entire plot, indicating chaos. Kicked Rotor Phase Portrait.png
Phase portraits (p vs. x) of the classical kicked rotor at different kicking strengths. The top row shows, from left to right, K = 0.5, 0.971635, 1.3. The bottom row shows, from left to right, K = 2.1, 5.0, 10.0. The phase portrait at the chaotic boundary is the upper middle plot, with KC = 0.971635. At and above KC, regions of uniform, grainy-coloured, quasi-random trajectories appear and eventually consume the entire plot, indicating chaos.

The kicked rotator, also spelled as kicked rotor, is a paradigmatic model for both Hamiltonian chaos (the study of chaos in Hamiltonian systems) and quantum chaos. It describes a free rotating stick (with moment of inertia ) in an inhomogeneous "gravitation like" field that is periodically switched on in short pulses. The model is described by the Hamiltonian

Contents

,

where is the angular position of the stick ( corresponds to the position of the rotator at rest), is the conjugated momentum of , is the kicking strength, is the kicking period and is the Dirac delta function.

Classical properties

Stroboscopic dynamics

The equations of motion of the kicked rotator write

Theses equations show that between two consecutive kicks, the rotator simply moves freely: the momentum is conserved and the angular position growths linearly in time. On the other hand, during each kick the momentum abruptly jumps by a quantity , where is the angular position near the kick. The kicked rotator dynamics can thus be described by the discrete map [1]

where and are the canonical coordinates at time , just before the -th kick. It is usually more convenient to introduce dimensionless momentum , time and kicking strength to reduce the dynamics to the single parameter map

known as Chirikov standard map, with the caveat that is not periodic as in the standard map. However, one can directly see that two rotators with same initial angular position but shifted dimensionless momentum and (with an arbitrary integer) will have the same exact stroboscopic dynamics, but with dimensionless momentum shifted at any time by (this is why stroboscopic phase portraits of the kicked rotator are usually displayed in a single momentum cell ).

Transition from integrability to chaos

The kicked rotator is a prototype model to illustrate the transition from integrability to chaos in Hamiltonian systems and in particular the Kolmogorov–Arnold–Moser theorem. In the limit , the system describes the free motion of the rotator, the momentum is conserved (the system is integrable) and the corresponding trajectories are straight lines in the plane (phase space), that is tori. For small, but non-vanishing perturbation , instabilities and chaos starts to develop. Only quasi-periodic orbits (represented by invariant tori in phase space) remain stables, while other orbits become unstables. For larger , invariant tori are eventually destroyed by the perturbation. For the value , the last invariant tori connecting and in phase space is destroyed.

Kicker Rotor Phase Portrait Animation

Diffusion in momentum direction

For , chaotic unstable orbits are no longer constraints by invariant tori in the momentum direction and can explore the full phase space. For , the particle after each kicks typically moved over a large distance, which strongly modifies the amplitude and sign of the following kick. At long time enough, the particle as thus been submitted to a series of kicks with quasi-random amplitudes. This quasi-random walk is responsible for a diffusion process in the momentum direction (where the average runs over different initial conditions).

More precisely, after kicks, the momentum of a particle with initial momentum writes [2] (obtained by iterating times the standard map). Assuming that kicks are randoms and uncorrelated in time, the spreading of the momentum distribution writes

The classical diffusion coefficient in momentum direction is then given in first approximation by . Corrections coming from neglected correlation terms can actually be taken into account, leading to the improved expression [3]

where is the Bessel function of first kind.

The quantum kicked rotator

Stroboscopic dynamics

The dynamics of the quantum kicked rotator (with wave function ) is governed by the time dependent Schrödinger's equation

with (or equivalently ).

As for classical dynamics, a stroboscopic point of view can be adopted by introducing the time propagator over a kicking period (that is the Floquet operator) so that . After a careful integration of the time-dependent Schrödinger's equation, one finds that can be written as the product of two operators

We recover the classical interpretation: the dynamics of the quantum kicked rotor between two kicks is the succession of a free propagation during a time followed by a short kick. This simple expression of the Floquet operator (a product of two operators, one diagonal in momentum basis, the other one diagonal in angular position basis) allows to easily numerically solve the evolution of a given wave function using split-step method.

Because of the periodic boundary conditions at , any wave function can be expanded in a discrete momentum basis (with , integer) see Bloch theorem), so that

Using this relation with the above expression of , we find the recursion relation [4]

where is a Bessel function of first kind.

Demonstration
Indeed, we have
So that we recover the result, keeping only non vanishing terms in the double sum.

Dynamical localization

It has been discovered [1] that the classical diffusion is suppressed in the quantum kicked rotator. It was later understood [5] [6] [7] [8] that this is a manifestation of a quantum dynamical localization effect that parallels Anderson localization. There is a general argument [9] [10] that leads to the following estimate for the breaktime of the diffusive behavior

Where is the classical diffusion coefficient. The associated localization scale in momentum is therefore .

The quantum kicked rotor can actually formally be related to the Anderson tight-binding model a celebrated Hamiltonian that describes electrons in a disordered lattice with lattice site state , where Anderson localization takes place (in one dimension)

where the are random on-site energies, and the are the hoping amplitudes between sites and . In the quantum kicked rotator it can be shown, [11] that the plane wave with quantized momentum play the role of the lattice sites states. The full mapping to the Anderson tight-binding model goes as follow (for a given eigenstates of the Floquet operator, with quasi-energy )

Dynamical localization in the quantum kicked rotator then actually takes place in the momentum basis.

The effect of noise and dissipation

If noise is added to the system, the dynamical localization is destroyed, and diffusion is induced. [12] [13] [14] This is somewhat similar to hopping conductance. The proper analysis requires to figure out how the dynamical correlations that are responsible for the localization effect are diminished.

Recall that the diffusion coefficient is , because the change in the momentum is the sum of quasi-random kicks . An exact expression for is obtained by calculating the "area" of the correlation function , namely the sum . Note that . The same calculation recipe holds also in the quantum mechanical case, and also if noise is added.

In the quantum case, without the noise, the area under is zero (due to long negative tails), while with the noise a practical approximation is where the coherence time is inversely proportional to the intensity of the noise. Consequently, the noise induced diffusion coefficient is

Also the problem of quantum kicked rotator with dissipation (due to coupling to a thermal bath) has been considered. There is an issue here how to introduce an interaction that respects the angle periodicity of the position coordinate, and is still spatially homogeneous. In the first works [15] [16] a quantum-optic type interaction has been assumed that involves a momentum dependent coupling. Later [17] a way to formulate a purely position dependent coupling, as in the Calderia-Leggett model, has been figured out, which can be regarded as the earlier version of the DLD model.

Experimental realization with cold atoms

The first experimental realizations of the quantum kicked rotator have been achieved by Mark G. Raizen group [18] [19] in 1995, later followed by the Auckland group, [20] and have encouraged a renewed interest in the theoretical analysis. In this kind of experiment, a sample of cold atoms provided by a magneto-optical trap interacts with a pulsed standing wave of light. The light being detuned with respect to the atomic transitions, atoms undergo a space-periodic conservative force. Hence, the angular dependence is replaced by a dependence on position in the experimental approach. Sub-milliKelvin cooling is necessary to obtain quantum effects: because of the Heisenberg uncertainty principle, the de Broglie wavelength, i.e. the atomic wavelength, can become comparable to the light wavelength. For further information, see. [21] Thanks to this technique, several phenomena have been investigated, including the noticeable:

See also

Related Research Articles

<span class="mw-page-title-main">Hydrogen atom</span> Atom of the element hydrogen

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the baryonic mass of the universe.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

<span class="mw-page-title-main">Quantum harmonic oscillator</span> Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

<span class="mw-page-title-main">Rabi cycle</span> Quantum mechanical phenomenon

In physics, the Rabi cycle is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi.

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

<span class="mw-page-title-main">Propagator</span> Function in quantum field theory showing probability amplitudes of moving particles

In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. These may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.

In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities. For example,

<span class="mw-page-title-main">Canonical quantization</span> Process of converting a classical physical theory into one compatible with quantum mechanics

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory to the greatest extent possible.

In particle physics, neutral particle oscillation is the transmutation of a particle with zero electric charge into another neutral particle due to a change of a non-zero internal quantum number, via an interaction that does not conserve that quantum number. Neutral particle oscillations were first investigated in 1954 by Murray Gell-mann and Abraham Pais.

Generally in scattering theory and in particular in quantum mechanics, the Born approximation consists of taking the incident field in place of the total field as the driving field at each point in the scatterer. The Born approximation is named after Max Born who proposed this approximation in early days of quantum theory development.

In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry. Such an operator is applied to a mathematical representation of the physical state of a system and yields an angular momentum value if the state has a definite value for it. In both classical and quantum mechanical systems, angular momentum is one of the three fundamental properties of motion.

<span class="mw-page-title-main">Jaynes–Cummings model</span> Model in quantum optics

The Jaynes–Cummings model is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

Amplitude amplification is a technique in quantum computing which generalizes the idea behind Grover's search algorithm, and gives rise to a family of quantum algorithms. It was discovered by Gilles Brassard and Peter Høyer in 1997, and independently rediscovered by Lov Grover in 1998.

This article relates the Schrödinger equation with the path integral formulation of quantum mechanics using a simple nonrelativistic one-dimensional single-particle Hamiltonian composed of kinetic and potential energy.

Partial-wave analysis, in the context of quantum mechanics, refers to a technique for solving scattering problems by decomposing each wave into its constituent angular-momentum components and solving using boundary conditions.

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

The Peierls substitution method, named after the original work by Rudolf Peierls is a widely employed approximation for describing tightly-bound electrons in the presence of a slowly varying magnetic vector potential.

References

  1. 1 2 G. Casati, B.V. Chirikov, F.M. Izrailev and J. Ford, in Stochastic Behaviour in classical and Quantum Hamiltonian Systems, Vol. 93 of Lecture Notes in Physics, edited by G. Casati and J. Ford (Springer, N.Y. 1979), p. 334
  2. Zheng, Yindong; Kobe, Donald H. (2006). "Anomalous momentum diffusion in the classical kicked rotor". Chaos, Solitons & Fractals. 28 (2): 395–402. Bibcode:2006CSF....28..395Z. doi:10.1016/j.chaos.2005.05.053. ISSN   0960-0779.
  3. Ott, Edward (2008). Chaos in dynamical systems. Cambridge Univ. Press. ISBN   978-0-521-81196-5. OCLC   316041428.
  4. Zheng, Yindong; Kobe, Donald H. (2007). "Momentum diffusion of the quantum kicked rotor: Comparison of Bohmian and standard quantum mechanics". Chaos, Solitons & Fractals. 34 (4): 1105–1113. Bibcode:2007CSF....34.1105Z. doi:10.1016/j.chaos.2006.04.065. ISSN   0960-0779.
  5. Fishman, Shmuel; Grempel, D. R.; Prange, R. E. (1982). "Chaos, Quantum Recurrences, and Anderson Localization". Physical Review Letters. 49 (8): 509–512. Bibcode:1982PhRvL..49..509F. doi:10.1103/PhysRevLett.49.509. ISSN   0031-9007.
  6. Grempel, D. R.; Prange, R. E.; Fishman, Shmuel (1984). "Quantum dynamics of a nonintegrable system". Physical Review A. 29 (4): 1639–1647. Bibcode:1984PhRvA..29.1639G. doi:10.1103/PhysRevA.29.1639. ISSN   0556-2791.
  7. Fishman, Shmuel; Prange, R. E.; Griniasty, Meir (1989). "Scaling theory for the localization length of the kicked rotor". Physical Review A. 39 (4): 1628–1633. Bibcode:1989PhRvA..39.1628F. doi:10.1103/PhysRevA.39.1628. ISSN   0556-2791. PMID   9901416.
  8. Fishman, Shmuel; Grempel, D. R.; Prange, R. E. (1987). "Temporal crossover from classical to quantal behavior near dynamical critical points". Physical Review A. 36 (1): 289–305. Bibcode:1987PhRvA..36..289F. doi:10.1103/PhysRevA.36.289. ISSN   0556-2791. PMID   9898683.
  9. B.V. Chirikov, F.M. Izrailev and D.L. Shepelyansky, Sov. Sci. Rev. 2C, 209 (1981).
  10. Shepelyansky, D.L. (1987). "Localization of diffusive excitation in multi-level systems". Physica D: Nonlinear Phenomena. 28 (1–2): 103–114. Bibcode:1987PhyD...28..103S. doi:10.1016/0167-2789(87)90123-0. ISSN   0167-2789.
  11. Fishman, Shmuel; Grempel, D. R.; Prange, R. E. (1982-08-23). "Chaos, Quantum Recurrences, and Anderson Localization". Physical Review Letters. 49 (8): 509–512. Bibcode:1982PhRvL..49..509F. doi:10.1103/PhysRevLett.49.509.
  12. Ott, E.; Antonsen, T. M.; Hanson, J. D. (1984). "Effect of Noise on Time-Dependent Quantum Chaos". Physical Review Letters. 53 (23): 2187–2190. Bibcode:1984PhRvL..53.2187O. doi:10.1103/PhysRevLett.53.2187. ISSN   0031-9007.
  13. Cohen, Doron (1991). "Quantum chaos, dynamical correlations, and the effect of noise on localization". Physical Review A. 44 (4): 2292–2313. Bibcode:1991PhRvA..44.2292C. doi:10.1103/PhysRevA.44.2292. ISSN   1050-2947. PMID   9906211.
  14. Cohen, Doron (1991). "Localization, dynamical correlations, and the effect of colored noise on coherence". Physical Review Letters. 67 (15): 1945–1948. arXiv: chao-dyn/9909016 . Bibcode:1991PhRvL..67.1945C. doi:10.1103/PhysRevLett.67.1945. ISSN   0031-9007. PMID   10044295.
  15. Dittrich, T.; Graham, R. (1986). "Quantization of the kicked rotator with dissipation". Zeitschrift für Physik B. 62 (4): 515–529. Bibcode:1986ZPhyB..62..515D. doi:10.1007/BF01303584. ISSN   0722-3277. S2CID   189792730.
  16. Dittrich, T; Graham, R (1990). "Long time behavior in the quantized standard map with dissipation". Annals of Physics. 200 (2): 363–421. Bibcode:1990AnPhy.200..363D. doi:10.1016/0003-4916(90)90279-W. ISSN   0003-4916.
  17. Cohen, D (1994). "Noise, dissipation and the classical limit in the quantum kicked-rotator problem". Journal of Physics A: Mathematical and General. 27 (14): 4805–4829. Bibcode:1994JPhA...27.4805C. doi:10.1088/0305-4470/27/14/011. ISSN   0305-4470.
  18. Moore, F. L.; Robinson, J. C.; Bharucha, C. F.; Sundaram, Bala; Raizen, M. G. (1995-12-18). "Atom Optics Realization of the Quantum $\ensuremath{\delta}$-Kicked Rotor". Physical Review Letters. 75 (25): 4598–4601. doi:10.1103/PhysRevLett.75.4598. PMID   10059950.
  19. Klappauf, B. G.; Oskay, W. H.; Steck, D. A.; Raizen, M. G. (1998). "Observation of Noise and Dissipation Effects on Dynamical Localization". Physical Review Letters. 81 (6): 1203–1206. Bibcode:1998PhRvL..81.1203K. doi:10.1103/PhysRevLett.81.1203. ISSN   0031-9007.
  20. Ammann, H.; Gray, R.; Shvarchuck, I.; Christensen, N. (1998). "Quantum Delta-Kicked Rotor: Experimental Observation of Decoherence". Physical Review Letters. 80 (19): 4111–4115. Bibcode:1998PhRvL..80.4111A. doi:10.1103/PhysRevLett.80.4111. ISSN   0031-9007.
  21. M. Raizen in New directions in quantum chaos, Proceedings of the International School of Physics Enrico Fermi, Course CXLIII, Edited by G. Casati, I. Guarneri and U. Smilansky (IOS Press, Amsterdam 2000).
  22. Gommers, R.; Denisov, S.; Renzoni, F. (2006). "Quasiperiodically Driven Ratchets for Cold Atoms". Physical Review Letters. 96 (24): 240604. arXiv: cond-mat/0610262 . Bibcode:2006PhRvL..96x0604G. doi:10.1103/PhysRevLett.96.240604. ISSN   0031-9007. PMID   16907228. S2CID   36630433.
  23. Chabé, Julien; Lemarié, Gabriel; Grémaud, Benoît; Delande, Dominique; Szriftgiser, Pascal; Garreau, Jean Claude (2008). "Experimental Observation of the Anderson Metal-Insulator Transition with Atomic Matter Waves". Physical Review Letters. 101 (25): 255702. arXiv: 0709.4320 . Bibcode:2008PhRvL.101y5702C. doi:10.1103/PhysRevLett.101.255702. ISSN   0031-9007. PMID   19113725. S2CID   773761.