Methanoregula | |
---|---|
Scientific classification | |
Domain: | |
Kingdom: | |
Phylum: | |
Class: | |
Order: | |
Family: | Methanoregulaceae |
Genus: | Methanoregula Brauer et al. 2011 |
Type species | |
Methanoregula boonei Brauer et al. 2011 | |
Species | |
| |
Synonyms | |
|
In the taxonomy of microorganisms, Candidatus Methanoregula is a genus of the Methanomicrobiales. [1] It was is isolated from an acidic peat bog. It produces methane at the lowest pH of any known organism. [2]
Nanoarchaeota is a proposed phylum in the domain Archaea that currently has only one representative, Nanoarchaeum equitans, which was discovered in a submarine hydrothermal vent and first described in 2002.
Halobacteriaceae is a family in the order Halobacteriales and the domain Archaea. Halobacteriaceae represent a large part of halophilic Archaea, along with members in two other methanogenic families, Methanosarcinaceae and Methanocalculaceae. The family consists of many diverse genera that can survive extreme environmental niches. Most commonly, Halobacteriaceae are found in hypersaline lakes and can even tolerate sites polluted by heavy metals. They include neutrophiles, acidophiles, alkaliphiles, and there have even been psychrotolerant species discovered. Some members have been known to live aerobically, as well as anaerobically, and they come in many different morphologies. These diverse morphologies include rods in genus Halobacterium, cocci in Halococcus, flattened discs or cups in Haloferax, and other shapes ranging from flattened triangles in Haloarcula to squares in Haloquadratum, and Natronorubrum. Most species of Halobacteriaceae are best known for their high salt tolerance and red-pink pigmented members, but there are also non-pigmented species and those that require moderate salt conditions. Some species of Halobacteriaceae have been shown to exhibit phosphorus solubilizing activities that contribute to phosphorus cycling in hypersaline environments. Techniques such as 16S rRNA analysis and DNA-DNA hybridization have been major contributors to taxonomic classification in Halobacteriaceae, partly due to the difficulty in culturing halophilic Archaea.
Methanococcus is a genus of coccoid methanogens of the family Methanococcaceae. They are all mesophiles, except the thermophilic M. thermolithotrophicus and the hyperthermophilic M. jannaschii. The latter was discovered at the base of a “white smoker” chimney at 21°N on the East Pacific Rise and it was the first archaeal genome to be completely sequenced, revealing many novel and eukaryote-like elements.
Methanobacteriales is an order of archaeans in the class Methanobacteria. Species within this order differ from other methanogens in that they can use fewer catabolic substrates and have distinct morphological characteristics, lipid compositions, and RNA sequences. Their cell walls are composed of pseudomurein. Most species are Gram-positive with rod-shaped bodies and some can form long filaments. Most of them use formate to reduce carbon dioxide, but those of the genus Methanosphaera use hydrogen to reduce methanol to methane.
In taxonomy, the Methanococcales are an order of the Methanococci.
In the taxonomy of microorganisms, the Methanomicrobiales are an order of the Methanomicrobia. Methanomicrobiales are strictly carbon dioxide reducing methanogens, using hydrogen or formate as the reducing agent. As seen from the phylogenetic tree based on 'The All-Species Living Tree' Project the family Methanomicrobiaceae is highly polyphyletic within the Methanomicrobiales.
Sulfolobales is an order of archaeans in the class Thermoprotei.
In taxonomy, the Thermococcales are an order of microbes within the Thermococci. The species within the Thermococcales are used in laboratories as model organisms. All these species are strict anaerobes and can ferment sugars as sources of carbon, but they also need elemental sulfur.
Thermoproteales are an order of archaeans in the class Thermoprotei. They are the only organisms known to lack the SSB proteins, instead possessing the protein ThermoDBP that has displaced them. The rRNA genes of these organisms contain multiple introns, which can be homing endonuclease encoding genes, and their presence can impact the binding of "universal" 16S rRNA primers often used in environmental sequencing surveys.
In taxonomy, the Methanocaldococcaceae are a family of microbes within the order Methanococcales. It contains two genera, the type genus Methanocaldococcus and Methanotorris. These species are coccoid in form, neutrophilic to slightly acidophilic, and predominantly motile, and they have a very short generation period, from 25 to 45 minutes under optimal conditions. They produce energy exclusively through the reduction of carbon dioxide with hydrogen. Some species have been found in marine hydrothermal vents.
In taxonomy, the Methanococcaceae are a family of the Methanococcales. These organisms produce methane from formate or through the reduction of carbon dioxide with hydrogen. They live in marshes and other coastal areas. Members of the genus Methanothermococcus have been found in deep-sea hydrothermal vents.
In taxonomy, the Methanocorpusculaceae are a family of microbes within the order Methanomicrobiales. It contains exactly one genus, Methanocorpusculum. The species within Methanocorpusculum were first isolated from anaerobic digesters and anaerobic wastewater treatment plants. In the wild, they prefer freshwater environments. Unlike many other methanogenic archaea, they do not require high temperatures or extreme salt concentrations to live and grow.
Methanomicrobiaceae are a family of archaea in the order the Methanomicrobiales.
Methanospirillaceae are a family of microbes within Methanomicrobiales.
Methanothermaceae are a family of microbes within the order Methanobacteriales.
In taxonomy, the Thermococcaceae are a family of the Thermococcales. Almost all species within the three genera of Thermococcaceae were isolated from hydrothermal vents in the ocean. All are strictly anaerobes.
In taxonomy, Methanimicrococcus is a genus of the Methanosarcinaceae. The members of this genus have been found in pharmaceutical wastewater, and they can contribute to the degradation of organic contaminants.
In taxonomy, Methanomethylovorans is a genus of microorganisms with the family Methanosarcinaceae. This genus was first described in 1999. The species within it generally live in freshwater environments, including rice paddies, freshwater sediments and contaminated soil. They produce methane from methanol, methylamines, dimethyl sulfide and methanethiol. With the exception of M. thermophila, which has an optimal growth temperature of 50 °C, these species are mesophiles and do not tend to grow at temperatures above 40 °C.
In taxonomy, Methanomicrobium is a genus of the Methanomicrobiaceae. The cells are shaped like short bars and do not form endospores. They produce methane via the reduction of carbon dioxide with hydrogen or formate. They cannot metabolize acetate, methylamines, or methanol.
Methanocalculus is a genus of the Methanomicrobiales, and is known to include methanogens.