Mukaiyama Taxol total synthesis

Last updated
Mukaiyama Taxol total synthesis overview from raw material perspective MukaiyamaTaxolOverview.svg
Mukaiyama Taxol total synthesis overview from raw material perspective

The Mukaiyama taxol total synthesis published by the group of Teruaki Mukaiyama of the Tokyo University of Science between 1997 and 1999 was the 6th successful taxol total synthesis. The total synthesis of Taxol is considered a hallmark in organic synthesis.

Contents

This version is a linear synthesis with ring formation taking place in the order C, B, A, D. Contrary to the other published methods, the tail synthesis is by an original design. Teruaki Mukaiyama is an expert on aldol reactions and not surprisingly his Taxol version contains no less than 5 of these reactions. Other key reactions encountered in this synthesis are a pinacol coupling and a Reformatskii reaction. In terms of raw materials the C20 framework is built up from L-serine (C3), isobutyric acid (C4), glycolic acid (C2), methyl bromide (C1), methyl iodide (C1), 2,3-dibromopropene (C3), acetic acid (C2) and homoallyl bromide (C4).

Synthesis C ring

The lower rim of the cyclooctane B ring containing the first 5 carbon atoms was synthesized in a semisynthesis starting from naturally occurring L-serine (scheme 1). This route started with conversion of the amino group of the serine methyl ester (1) to the diol ester 2 via diazotization (sodium nitrite/sulfuric acid). After protection of the primary alcohol group to a (t-butyldimethyl) TBS silyl ether (TBSCl / imidazole) and that of the secondary alcohol group with a (Bn) benzyl ether (benzyl imidate, triflic acid), the aldehyde 3 was reacted with the methyl ester of isobutyric acid (4) in an Aldol addition to alcohol 5 with 65% stereoselectivity. This group was protected as a PMB (p-methoxybenzyl) ether (again through an imidate) in 6 which enabled organic reduction of the ester to the aldehyde in 7 with DIBAL.

Ring B synthesis scheme 1 MukaiyamaTaxolPartI.svg
Ring B synthesis scheme 1
Scheme 1

Completing the cyclooctane ring required 3 more carbon atoms that were supplied by a C2 fragment in an aldol addition and a Grignard C1 fragment (scheme 2). A Mukaiyama aldol addition (magnesium bromide / toluene) took place between aldehyde 7 and ketene silyl acetal 8 with 71% stereoselectivity to alcohol 9 which was protected as the TBS ether 10 (TBSOTf, 2,6-lutidine). The ester group was reduced with DIBAL to an alcohol and then back oxidized to aldehyde 11 by Swern oxidation. Alkylation by methyl magnesium bromide to alcohol 12 and another Swern oxidation gave ketone 13. This group was converted to the silyl enol ether 14 (LHMDS, TMSCl) enabling it to react with NBS to alkyl bromide 15. The C20 methyl group was introduced as methyl iodide in a nucleophilic substitution with a strong base (LHMDS in HMPA) to bromide 16. Then in preparation to ring-closure the TBS ether was deprotected (HCl/THF) to an alcohol which was converted to the aldehyde 17 in a Swern oxidation. The ring-closing reaction was a Reformatskii reaction with Samarium(II) iodide and acetic acid to acetate 18. The stereochemistry of this particular step was of no consequence because the acetate group is dehydrated to the alkene 19 with DBU in benzene.

Ring B synthesis scheme MukaiyamaTaxolPartII.svg
Ring B synthesis scheme
Scheme 2

Synthesis B ring

The C5 fragment 24 required for the synthesis of the C ring (scheme 3) was prepared from 2,3-dibromopropene (20) [1] by reaction with ethyl acetate (21), n-butyllithium and a copper salt, followed by organic reduction of acetate 22 to alcohol 23 (lithium aluminium hydride) and its TES silylation. Michael addition of 24 with the cyclooctane 19 to 25 with t-BuLi was catalyzed by copper cyanide. After removal of the TES group (HCl, THF), the alcohol 26 was oxidized to aldehyde 27 (TPAP, NMO)which enabled the intramolecular Aldol reaction to bicycle 28.

Ring C synthesis scheme 3 MukaiyamaTaxolPartIII.svg
Ring C synthesis scheme 3
Scheme 3

Synthesis A ring

Ring A synthesis (scheme 4) started with reduction of the C9 ketone group in 28 to diol 29 with alane in toluene followed by diol protection in 30 as a dimethyl carbonate. This allowed selective oxidation of the C1 alcohol with DDQ after deprotection to ketone 31. This compound was alkylated to 32 at the C1 ketone group with the Grignard homoallyl magnesium bromide (C4 fragment completing the carbon framework) and deprotected at C11 (TBAF) to diol 33. By reaction with cyclohexylmethylsilyldichloride both alcohol groups participated in a cyclic silyl ether (34) which was again cleaved by reaction with methyl lithium exposing the C11 alcohol in 35. The A ring closure required two ketone groups for a pinacol coupling which were realized by oxidation of the C11 alcohol (TPAP, NMO) to ketone 36 and Wacker oxidation of the allyl group to diketone 37. After formation of the pinacol product 38 the benzyl groups (sodium, ammonia) and the trialkylsilyl groups (TBAF) were removed to form pentaol 39.

Ring A synthesis scheme 4 MukaiyamaTaxolPartIV.svg
Ring A synthesis scheme 4
Scheme 4

The pentaol 39 was protected twice: two bottom hydroxyl groups as a carbonate ester (bis(trichloromethyl)carbonate, pyridine) and the C10 hydroxyl group as the acetate forming 40. The acetonide group was removed (HCl, THF), the C7 hydroxyl group protected as a TES silyl ether and the C11 OH group oxidized (TPAP, NMO) to ketone 41. The ring A diol group was next removed in a combined elimination reaction and Barton deoxygenation with 1,1'-thiocarbonyldiimidazole forming alkene 42. Finally the C15 hydroxyl group was introduced by oxidation at the allyl position with in two steps PPC and sodium acetate (to the enone) and with K-selectride to alcohol 43 which was protected as a TES ether in 44.

Ring A synthesis part 2 scheme 5 MukaiyamaTaxolPartV.svg
Ring A synthesis part 2 scheme 5
Scheme 5

Synthesis D ring

The synthesis of the D ring (scheme 6) started from 44 with allylic bromination with copper(I) bromide and benzoyl tert-butyl peroxide to bromide 45. By adding even more bromide, another bromide 46 formed (both compounds are in chemical equilibrium) with the bromine atom in an axial position. Osmium tetroxide added two hydroxyl groups to the exocyclic double bond in diol 47 and oxetane ring-closure to 48 took place with DBU in a nucleophilic substitution. Then, acylation of the C4 hydroxyl group (acetic anhydride, DMAP, pyridine) resulted in acetate 49. In the final steps phenyllithium opened the ester group to form hydroxy carbonate 50, both TES groups were removed (HF, pyr) to triol 51 (baccatin III) and the C7 hydroxyl group was back-protected to 52.

Ring D synthesis scheme 6 MukaiyamaTaxolPartVI.svg
Ring D synthesis scheme 6
Scheme 6

Tail synthesis

The amide tail synthesis (scheme 7) was based on an asymmetric Aldol reaction. The starting compound is the commercially available Benzyloxyacetic acid53 which was converted to the thio ester 55 (Ethanethiol) through the acid chloride 54 (thionyl chloride, pyridine). This formed the silyl enol ether 55 (n-butyllithium, trimethylsilyl chloride, Diisopropylamine) which reacted with chiral amine catalyst 58, tin triflate and nBu2(OAc)2 in a Mukaiyama aldol addition with benzaldehyde to alcohol 59 with 99% anti selectivity and 96% ee. The next step converting the alcohol group to an amine in 60 was a Mitsunobu reaction (hydrogen azide, diethyl azodicarboxylate, triphenylphosphine with azide reduction to amine by Ph3P). The amine group was benzoylated with benzoyl chloride (61) and hydrolysis removes the thioether group in 62.

Tail synthesis scheme 7 MukaiyamaTaxolTail.svg
Tail synthesis scheme 7
Scheme 7

Tail addition

In the final synthetic steps (scheme 8) the amide tail 62 was added to ABCD ring 52 in an esterification catalysed by o,o'-di(2-pyridyl) thiocarbonate (DPTC) and DMAP forming ester 63. The Bn protecting group was removed by hydrogenation using palladium hydroxide on carbon (64) and finally the TES group was removed by HF and pyridine to yield Taxol 65.

Tail addition scheme 8 MukaiyamaTaxolPartVII.svg
Tail addition scheme 8
Scheme 8

See also

Related Research Articles

The aldol reaction is a reaction that combines two carbonyl compounds to form a new β-hydroxy carbonyl compound.

A diol is a chemical compound containing two hydroxyl groups. An aliphatic diol is also called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified.

<span class="mw-page-title-main">Enol</span> Organic compound with a C=C–OH group

In organic chemistry, alkenols are a type of reactive structure or intermediate in organic chemistry that is represented as an alkene (olefin) with a hydroxyl group attached to one end of the alkene double bond. The terms enol and alkenol are portmanteaus deriving from "-ene"/"alkene" and the "-ol" suffix indicating the hydroxyl group of alcohols, dropping the terminal "-e" of the first term. Generation of enols often involves deprotonation at the α position to the carbonyl group—i.e., removal of the hydrogen atom there as a proton H+. When this proton is not returned at the end of the stepwise process, the result is an anion termed an enolate. The enolate structures shown are schematic; a more modern representation considers the molecular orbitals that are formed and occupied by electrons in the enolate. Similarly, generation of the enol often is accompanied by "trapping" or masking of the hydroxy group as an ether, such as a silyl enol ether.

<span class="mw-page-title-main">Trimethylsilyl group</span> Functional group

A trimethylsilyl group (abbreviated TMS) is a functional group in organic chemistry. This group consists of three methyl groups bonded to a silicon atom [−Si(CH3)3], which is in turn bonded to the rest of a molecule. This structural group is characterized by chemical inertness and a large molecular volume, which makes it useful in a number of applications.

<span class="mw-page-title-main">Nicolaou Taxol total synthesis</span>

The Nicolaou Taxol total synthesis, published by K. C. Nicolaou and his group in 1994 concerns the total synthesis of taxol. Taxol is an important drug in the treatment of cancer but also expensive because the compound is harvested from a scarce resource, namely the pacific yew.

Silyl ethers are a group of chemical compounds which contain a silicon atom covalently bonded to an alkoxy group. The general structure is R1R2R3Si−O−R4 where R4 is an alkyl group or an aryl group. Silyl ethers are usually used as protecting groups for alcohols in organic synthesis. Since R1R2R3 can be combinations of differing groups which can be varied in order to provide a number of silyl ethers, this group of chemical compounds provides a wide spectrum of selectivity for protecting group chemistry. Common silyl ethers are: trimethylsilyl (TMS), tert-butyldiphenylsilyl (TBDPS), tert-butyldimethylsilyl (TBS/TBDMS) and triisopropylsilyl (TIPS). They are particularly useful because they can be installed and removed very selectively under mild conditions.

<span class="mw-page-title-main">Danishefsky Taxol total synthesis</span>

The Danishefsky Taxol total synthesis in organic chemistry is an important third Taxol synthesis published by the group of Samuel Danishefsky in 1996 two years after the first two efforts described in the Holton Taxol total synthesis and the Nicolaou Taxol total synthesis. Combined they provide a good insight in the application of organic chemistry in total synthesis.

<span class="mw-page-title-main">Holton Taxol total synthesis</span>

The Holton Taxol total synthesis, published by Robert A. Holton and his group at Florida State University in 1994, was the first total synthesis of Taxol.

<span class="mw-page-title-main">Acyloin</span> Organic compounds of the form –C(=O)C(OH)–

In organic chemistry, acyloins or α-hydroxy ketones are a class of organic compounds of the general form R−C(=O)−CR'(OH)−R", composed of a hydroxy group adjacent to a ketone group. The name acyloin is derived from the fact that they are formally derived from reductive coupling of carboxylic acyl groups. They are one of the two main classes of hydroxy ketones, distinguished by the position of the hydroxy group relative to the ketone; in this form, the hydroxy is on the alpha carbon, explaining the secondary name of α-hydroxy ketone.

<span class="mw-page-title-main">Epothilone</span> Class of chemical compounds

Epothilones are a class of potential cancer drugs. Like taxanes, they prevent cancer cells from dividing by interfering with tubulin, but in early trials, epothilones have better efficacy and milder adverse effects than taxanes.

In organosilicon chemistry, silyl enol ethers are a class of organic compounds that share the common functional group R3Si−O−CR=CR2, composed of an enolate bonded to a silane through its oxygen end and an ethene group as its carbon end. They are important intermediates in organic synthesis.

The Rubottom oxidation is a useful, high-yielding chemical reaction between silyl enol ethers and peroxyacids to give the corresponding α-hydroxy carbonyl product. The mechanism of the reaction was proposed in its original disclosure by A.G. Brook with further evidence later supplied by George M. Rubottom. After a Prilezhaev-type oxidation of the silyl enol ether with the peroxyacid to form the siloxy oxirane intermediate, acid-catalyzed ring-opening yields an oxocarbenium ion. This intermediate then participates in a 1,4-silyl migration to give an α-siloxy carbonyl derivative that can be readily converted to the α-hydroxy carbonyl compound in the presence of acid, base, or a fluoride source.

<span class="mw-page-title-main">Mukaiyama aldol addition</span> Organic reaction between a silyl enol ether and an aldehyde or formate

In organic chemistry, the Mukaiyama aldol addition is an organic reaction and a type of aldol reaction between a silyl enol ether and an aldehyde or formate. The reaction was discovered by Teruaki Mukaiyama (1927–2018) in 1973. His choice of reactants allows for a crossed aldol reaction between an aldehyde and a ketone, or a different aldehyde without self-condensation of the aldehyde. For this reason the reaction is used extensively in organic synthesis.

<span class="mw-page-title-main">Wender Taxol total synthesis</span>

Wender Taxol total synthesis in organic chemistry describes a Taxol total synthesis by the group of Paul Wender at Stanford University published in 1997. This synthesis has much in common with the Holton Taxol total synthesis in that it is a linear synthesis starting from a naturally occurring compound with ring construction in the order A,B,C,D. The Wender effort is shorter by approximately 10 steps.

<span class="mw-page-title-main">Kuwajima Taxol total synthesis</span>

The Kuwajima Taxol total synthesis by the group of Isao Kuwajima of the Tokyo Institute of Technology is one of several efforts in taxol total synthesis published in the 1990s. The total synthesis of Taxol is considered a landmark in organic synthesis.

<span class="mw-page-title-main">Strychnine total synthesis</span>

Strychnine total synthesis in chemistry describes the total synthesis of the complex biomolecule strychnine. The first reported method by the group of Robert Burns Woodward in 1954 is considered a classic in this research field.

<span class="mw-page-title-main">Integrasone</span> Chemical compound

Integrasone is a polyketide natural product, isolated from an unknown fungus, that has been shown to inhibit the HIV-1 integrase enzyme.

<span class="mw-page-title-main">Takahashi Taxol total synthesis</span>

The Takahashi Taxol total synthesis published by Takashi Takahashi in 2006 is one of several methods in taxol total synthesis. The method starts from geraniol and differs from the other 6 published methods that it is a formal synthesis and that it is racemic. A key feature of the published procedure is that several synthetic steps were performed in an automated synthesizer on a scale up to 300 gram and that purification steps were also automated.

<span class="mw-page-title-main">Cholesterol total synthesis</span>

Cholesterol total synthesis in chemistry describes the total synthesis of the complex biomolecule cholesterol and is considered a great scientific achievement. The research group of Robert Robinson with John Cornforth published their synthesis in 1951 and that of Robert Burns Woodward with Franz Sondheimer in 1952. Both groups competed for the first publication since 1950 with Robinson having started in 1932 and Woodward in 1949. According to historian Greg Mulheirn the Robinson effort was hampered by his micromanagement style of leadership and the Woodward effort was greatly facilitated by his good relationships with chemical industry. Around 1949 steroids like cortisone were produced from natural resources but expensive. Chemical companies Merck & Co. and Monsanto saw commercial opportunities for steroid synthesis and not only funded Woodward but also provided him with large quantities of certain chemical intermediates from pilot plants. Hard work also helped the Woodward effort: one of the intermediate compounds was named Christmasterone as it was synthesized on Christmas Day 1950 by Sondheimer.

<span class="mw-page-title-main">Teruaki Mukaiyama</span> Japanese chemist (1927–2018)

Teruaki Mukaiyama was a Japanese organic chemist. One of the most prolific chemists of the 20th century in the field of organic synthesis, Mukaiyama helped establish the field of organic chemistry in Japan after World War II.

References

Bibliography
Citations
  1. R. Lespieau and M. Bourgue (1941). "2,3-Dibromopropene". Organic Syntheses .; Collective Volume, vol. 1, p. 209