Nectarian

Last updated
Nectarian
3920 – 3850 Ma
I
N
E
C
Chronology
Usage information
Celestial body Earth's Moon
Time scale(s) usedLunar geologic timescale
Definition
Chronological unit Period

The Nectarian Period of the lunar geologic timescale was from 3.920 billion years ago to 3.850 billion years ago. It is the period during which the Nectaris Basin and other major basins were formed by large impact events. Ejecta from Nectaris form the upper part of the densely cratered terrain found in lunar highlands. The period ended with the formation of the Imbrium basin, which initiated the Imbrian Period. [1] Magnetic anomalies found in some Nectarian Period basins suggest that the Moon possessed a core dynamo magnetic field at that time. [2]

Contents

Early ImbrianLate ImbrianPre-NectarianNectarianEratosthenianCopernican periodNectarian
Millions of years before present

Relationship to Earth's geologic time scale

Since little or no geological evidence on Earth exists from the time spanned by the Nectarian Period of the Moon, the Nectarian has been used by at least one notable scientific work [3] as an unofficial subdivision of the terrestrial Hadean eon.

See also

Related Research Articles

The Precambrian is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of the Phanerozoic Eon, which is named after Cambria, the Latinized name for Wales, where rocks from this age were first studied. The Precambrian accounts for 88% of the Earth's geologic time.

The Hadean is the first and oldest of the four known geologic eons of Earth's history, starting with the planet's formation about 4.6 billion years ago, and ended 4.031 billion years ago. The interplanetary collision that created the Moon occurred early in this eon. The Hadean eon was succeeded by the Archean eon, with the Late Heavy Bombardment hypothesized to have occurred at the Hadean-Archean boundary.

<span class="mw-page-title-main">South Pole–Aitken basin</span> Large impact crater on the Moon

The South Pole–Aitken basin is an immense impact crater on the far side of the Moon. At roughly 2,500 km (1,600 mi) in diameter and between 6.2 and 8.2 km (3.9–5.1 mi) deep, it is one of the largest known impact craters in the Solar System. It is the largest, oldest, and deepest basin recognized on the Moon. It is estimated that it was formed 4.2 to 4.3 billion years ago, during the Pre-Nectarian epoch. It was named for two features on opposite sides of the basin: the lunar South Pole at one end and the crater Aitken on the northern end. The outer rim of this basin can be seen from Earth as a huge mountain chain located on the Moon's southern limb, sometimes informally called "Leibnitz mountains".

<span class="mw-page-title-main">Mare Nectaris</span> Feature on the moon

Mare Nectaris is a small lunar mare or sea located south of Mare Tranquillitatis southwest of Mare Fecunditatis, on the near side of the Moon. Montes Pyrenaeus borders the mare to the east and Sinus Asperitatis fuses to its northwestern edge. It is 84,000 square kilometers in size.

<span class="mw-page-title-main">Lunar geologic timescale</span> Geological dating system of the Moon

The lunar geological timescale divides the history of Earth's Moon into five generally recognized periods: the Copernican, Eratosthenian, Imbrian, Nectarian, and Pre-Nectarian. The boundaries of this time scale are related to large impact events that have modified the lunar surface, changes in crater formation through time, and the size-frequency distribution of craters superposed on geological units. The absolute ages for these periods have been constrained by radiometric dating of samples obtained from the lunar surface. However, there is still much debate concerning the ages of certain key events, because correlating lunar regolith samples with geological units on the Moon is difficult, and most lunar radiometric ages have been highly affected by an intense history of bombardment.

<span class="mw-page-title-main">Copernican period</span> Lunar geologic period

The Copernican Period in the lunar geologic timescale runs from approximately 1.1 billion years ago to the present day. The base of the Copernican period is defined by impact craters that possess bright optically immature ray systems. The crater Copernicus is a prominent example of rayed crater, but it does not mark the base of the Copernican period.

The Eratosthenian period in the lunar geologic timescale runs from 3,200 million years ago to 1,100 million years ago. It is named after the crater Eratosthenes, which displays characteristics typical of craters of this age, including a surface that is not significantly eroded by subsequent impacts, but which also does not possess a ray system. The massive basaltic volcanism of the Imbrian period tapered off and ceased during this long span of lunar time. The youngest lunar lava flows identified from orbital images are tentatively placed near the end of this period.

The pre-Nectarian period of the lunar geologic timescale runs from 4.533 billion years ago to 3.920 billion years ago, when the Nectaris Basin was formed by a large impact. It is followed by the Nectarian period.

The Cryptic era is an informal term for the earliest geologic evolution of the Earth and Moon. It is the oldest (informal) era of the Hadean eon, and it is commonly accepted to have begun close to about 4.533 billion years ago when the Earth and Moon formed, and lasted to about 4.15 billion years ago. No samples exist to date the transition between the Cryptic era and the following Basin Groups era for the Moon, though sometimes it is stated that this era ended 4150 million years ago for one or both of these bodies. Neither this time period, nor any other Hadean subdivision, has been officially recognized by the International Commission on Stratigraphy.

<span class="mw-page-title-main">Geology of the Moon</span> Structure and composition of the Moon

The geology of the Moon is quite different from that of Earth. The Moon lacks a true atmosphere, and the absence of free oxygen and water eliminates erosion due to weather. Instead, the surface is eroded much more slowly through the bombardment of the lunar surface by micrometeorites. It does not have any known form of plate tectonics, it has a lower gravity, and because of its small size, it cooled faster. In addition to impacts, the geomorphology of the lunar surface has been shaped by volcanism, which is now thought to have ended less than 50 million years ago. The Moon is a differentiated body, with a crust, mantle, and core.

Basin Groups refers to 9 subdivisions of the lunar Pre-Nectarian geologic period. It is the second era of the Hadean.

<span class="mw-page-title-main">Magnetic field of the Moon</span>

The magnetic field of the Moon is very weak in comparison to that of the Earth; the major difference is the Moon does not have a dipolar magnetic field currently, so that the magnetization present is varied and its origin is almost entirely crustal in location; so it's difficult to compare as a percentage to Earth. But, one experiment discovered that lunar rocks formed 1 - 2.5 billion years ago were created in a field of about 5 microtesla (μT), compared to present day Earth's 50 μT. During the Apollo program several magnetic field strength readings were taken with readings ranging from a low of 6γ (6nT) at the Apollo 15 site to a maximum of 313γ (0.31μT) at the Apollo 16 site, note these readings were recorded in gammas(γ) a now outdated unit of magnetic flux density equivalent to 1nT.

<span class="mw-page-title-main">Geological history of Earth</span> The sequence of major geological events in Earths past

The geological history of the Earth follows the major geological events in Earth's past based on the geological time scale, a system of chronological measurement based on the study of the planet's rock layers (stratigraphy). Earth formed about 4.54 billion years ago by accretion from the solar nebula, a disk-shaped mass of dust and gas left over from the formation of the Sun, which also created the rest of the Solar System.

<span class="mw-page-title-main">Borealis quadrangle</span> Quadrangle on Mercury

The Borealis quadrangle is a quadrangle on Mercury surrounding the north pole down to 65° latitude. It was mapped in its entirety by the MESSENGER spacecraft, which orbited the planet from 2008 to 2015, excluding areas of permanent shadow near the north pole. Only approximately 25% of the quadrangle was imaged by the Mariner 10 spacecraft during its flybys in 1974 and 1975. The quadrangle is now called H-1.

<span class="mw-page-title-main">Discovery quadrangle</span> Quadrangle on Mercury

The Discovery quadrangle lies within the heavily cratered part of Mercury in a region roughly antipodal to the 1550-km-wide Caloris Basin. Like the rest of the heavily cratered part of the planet, the quadrangle contains a spectrum of craters and basins ranging in size from those at the limit of resolution of the best photographs to those as much as 350 km across, and ranging in degree of freshness from pristine to severely degraded. Interspersed with the craters and basins both in space and time are plains deposits that are probably of several different origins. Because of its small size and very early segregation into core and crust, Mercury has seemingly been a dead planet for a long time—possibly longer than the Moon. Its geologic history, therefore, records with considerable clarity some of the earliest and most violent events that took place in the inner Solar System.

<span class="mw-page-title-main">Late Heavy Bombardment</span> Hypothesized astronomical event

The Late Heavy Bombardment (LHB), or lunar cataclysm, is a hypothesized astronomical event thought to have occurred approximately 4.1 to 3.8 billion years (Ga) ago, at a time corresponding to the Neohadean and Eoarchean eras on Earth. According to the hypothesis, during this interval, a disproportionately large number of asteroids and comets collided into the terrestrial planets and their natural satellites in the inner Solar System, including Mercury, Venus, Earth and Mars. These came from both post-accretion and planetary instability-driven populations of impactors. Although it gained widespread credence, definitive evidence remained elusive. However, recent re-appraisal of the cosmo-chemical constraints suggest there was no late spike in the bombardment rate.

<span class="mw-page-title-main">Lunar swirls</span> Enigmatic features on the lunar surface

Lunar swirls are enigmatic features found across the Moon's surface, which are characterized by having a high albedo, appearing optically immature, and (often) having a sinuous shape. Their curvilinear shape is often accentuated by low albedo regions that wind between the bright swirls. They appear to overlay the lunar surface, superposed on craters and ejecta deposits, but impart no observable topography. Swirls have been identified on the lunar maria and on highlands - they are not associated with a specific lithologic composition. Swirls on the maria are characterized by strong albedo contrasts and complex, sinuous morphology, whereas those on highland terrain appear less prominent and exhibit simpler shapes, such as single loops or diffuse bright spots.

<span class="mw-page-title-main">Noachian</span> Geological system and early time period of Mars

The Noachian is a geologic system and early time period on the planet Mars characterized by high rates of meteorite and asteroid impacts and the possible presence of abundant surface water. The absolute age of the Noachian period is uncertain but probably corresponds to the lunar Pre-Nectarian to Early Imbrian periods of 4100 to 3700 million years ago, during the interval known as the Late Heavy Bombardment. Many of the large impact basins on the Moon and Mars formed at this time. The Noachian Period is roughly equivalent to the Earth's Hadean and early Archean eons when Earth's first life forms likely arose.

The Imbrian is a lunar geologic period divided into two epochs, the Early and Late.

<span class="mw-page-title-main">Crustal magnetism</span>

Crustal magnetism is the magnetic field of the crust of a planetary body. The crustal magnetism of Earth has been studied; in particular, various magnetic crustal anomalies have been studied. Two examples of crustal magnetic anomalies on Earth that have been studied in the Americas are the Brunswick magnetic anomaly (BMA) and East Coast magnetic anomaly (ECMA). Also, there can be a correlation between physical geological features and certain readings from crustal magnetism on Earth. Below the surface of the Earth, the crustal magnetism is lost because the temperature rises above the curie temperature of the materials producing the field.

References

  1. Liu, J.; Guo, D. (2018). "Lunar geological timescale" (PDF). Encyclopedia of lunar science. pp. 1–3. Retrieved 2024-09-01.
  2. Hood, Lon L. (February 2011). "Central magnetic anomalies of Nectarian-aged lunar impact basins: Probable evidence for an early core dynamo". Icarus. 211 (2): 1109–1128. Bibcode:2011Icar..211.1109H. doi:10.1016/j.icarus.2010.08.012.
  3. W. Harland; R. Armstrong; A. Cox; L. Craig; A. Smith; D. Smith (1990). A Geologic time scale 1989. Cambridge University Press.