PICA200

Last updated

PICA200 is a graphics processing unit (GPU) designed by Digital Media Professionals Inc. (DMP), a Japanese GPU design startup company, for use in embedded devices such as vehicle systems, mobile phones, cameras, and game consoles. The PICA200 is an IP Core which can be licensed to other companies to incorporate into their SOCs. [1] It was most notably licensed for use in the Nintendo 3DS.

Contents

It was announced at SIGGRAPH 2005, and an operational demo, "Mikage", was presented in collaboration with Futuremark at SIGGRAPH 2006. [2]

Overview

The PICA200 is the successor to the ULTRAY2000, a proof of concept graphics workstation presented at SIGGRAPH 2005, created with the goal of testing DMP's attempts at a low power fixed-function "MAESTRO" GPU architecture. [3]

The PICA200 implements the "MAESTRO-2G" architecture and supports programmable vertex shaders and geometry shaders, with a fixed-function fragment stage. It is advertised as supporting OpenGL ES 1.1 with certain proprietary extensions. [4]

The PICA200 has up to 4 programmable vertex processors which can work in parallel. One of those processors, the "primitive engine", can be used as either vertex processor or a geometry processor. [5]

Some MAESTRO-2G extensions include, per-pixel lighting [6] (where the lighting is calculated per pixel instead of per vertex), procedural texture generation, [7] bidirectional reflectance distribution function (BRDF), [6] Cook-Torrance specular highlights, [6] polygon subdivision (through geometry shaders), [8] soft shadow projection, and fake subsurface scattering [9] (similar to two-sided lighting). [10]

Applications

The PICA200 is used as the GPU for the Nintendo 3DS portable handheld game console. [11]

Specification

Related Research Articles

<span class="mw-page-title-main">Rendering (computer graphics)</span> Process of generating an image from a model

Rendering or image synthesis is the process of generating a photorealistic or non-photorealistic image from a 2D or 3D model by means of a computer program. The resulting image is referred to as the render. Multiple models can be defined in a scene file containing objects in a strictly defined language or data structure. The scene file contains geometry, viewpoint, texture, lighting, and shading information describing the virtual scene. The data contained in the scene file is then passed to a rendering program to be processed and output to a digital image or raster graphics image file. The term "rendering" is analogous to the concept of an artist's impression of a scene. The term "rendering" is also used to describe the process of calculating effects in a video editing program to produce the final video output.

<span class="mw-page-title-main">Scanline rendering</span> 3D computer graphics image rendering method

Scanline rendering is an algorithm for visible surface determination, in 3D computer graphics, that works on a row-by-row basis rather than a polygon-by-polygon or pixel-by-pixel basis. All of the polygons to be rendered are first sorted by the top y coordinate at which they first appear, then each row or scan line of the image is computed using the intersection of a scanline with the polygons on the front of the sorted list, while the sorted list is updated to discard no-longer-visible polygons as the active scan line is advanced down the picture.

<span class="mw-page-title-main">Texture mapping</span> Method of defining surface detail on a computer-generated graphic or 3D model

Texture mapping is a method for mapping a texture on a computer-generated graphic. Texture here can be high frequency detail, surface texture, or color.

<span class="mw-page-title-main">Volume rendering</span> Representing a 3D-modeled object or dataset as a 2D projection

In scientific visualization and computer graphics, volume rendering is a set of techniques used to display a 2D projection of a 3D discretely sampled data set, typically a 3D scalar field.

<span class="mw-page-title-main">Shader</span> Type of program in a graphical processing unit (GPU)

In computer graphics, a shader is a computer program that calculates the appropriate levels of light, darkness, and color during the rendering of a 3D scene—a process known as shading. Shaders have evolved to perform a variety of specialized functions in computer graphics special effects and video post-processing, as well as general-purpose computing on graphics processing units.

A first-person shooter engine is a video game engine specialized for simulating 3D environments for use in a first-person shooter video game. First-person refers to the view where the players see the world from the eyes of their characters. Shooter refers to games which revolve primarily around wielding firearms and killing other entities in the game world, either non-player characters or other players.

<span class="mw-page-title-main">Subsurface scattering</span>

Subsurface scattering (SSS), also known as subsurface light transport (SSLT), is a mechanism of light transport in which light that penetrates the surface of a translucent object is scattered by interacting with the material and exits the surface at a different point. The light will generally penetrate the surface and be reflected a number of times at irregular angles inside the material before passing back out of the material at a different angle than it would have had if it had been reflected directly off the surface.

In computer graphics, per-pixel lighting refers to any technique for lighting an image or scene that calculates illumination for each pixel on a rendered image. This is in contrast to other popular methods of lighting such as vertex lighting, which calculates illumination at each vertex of a 3D model and then interpolates the resulting values over the model's faces to calculate the final per-pixel color values.

<span class="mw-page-title-main">Xenos (graphics chip)</span> GPU used in the Xbox 360

The Xenos is a custom graphics processing unit (GPU) designed by ATI, used in the Xbox 360 video game console developed and produced for Microsoft. Developed under the codename "C1", it is in many ways related to the R520 architecture and therefore very similar to an ATI Radeon X1800 XT series of PC graphics cards as far as features and performance are concerned. However, the Xenos introduced new design ideas that were later adopted in the TeraScale microarchitecture, such as the unified shader architecture. The package contains two separate dies, the GPU and an eDRAM, featuring a total of 337 million transistors.

<span class="mw-page-title-main">ATI Rage series</span> Series of video cards

The ATI Rage is a series of graphics chipsets developed by ATI Technologies offering graphical user interface (GUI) 2D acceleration, video acceleration, and 3D acceleration developed by ATI Technologies. It is the successor to the ATI Mach series of 2D accelerators.

<span class="mw-page-title-main">RSX Reality Synthesizer</span> GPU for the PlayStation 3

The RSX 'Reality Synthesizer' is a proprietary graphics processing unit (GPU) codeveloped by Nvidia and Sony for the PlayStation 3 game console. It is a GPU based on the Nvidia 7800GTX graphics processor and, according to Nvidia, is a G70/G71 hybrid architecture with some modifications. The RSX has separate vertex and pixel shader pipelines. The GPU makes use of 256 MB GDDR3 RAM clocked at 650 MHz with an effective transmission rate of 1.3 GHz and up to 224 MB of the 3.2 GHz XDR main memory via the CPU . Although it carries the majority of the graphics processing, the Cell Broadband Engine, the console's CPU, is also used complementarily for some graphics-related computational loads of the console.

In computer graphics, a texture mapping unit (TMU) is a component in modern graphics processing units (GPUs). They are able to rotate, resize, and distort a bitmap image to be placed onto an arbitrary plane of a given 3D model as a texture, in a process called texture mapping. In modern graphics cards it is implemented as a discrete stage in a graphics pipeline, whereas when first introduced it was implemented as a separate processor, e.g. as seen on the Voodoo2 graphics card.

Computer graphics lighting is the collection of techniques used to simulate light in computer graphics scenes. While lighting techniques offer flexibility in the level of detail and functionality available, they also operate at different levels of computational demand and complexity. Graphics artists can choose from a variety of light sources, models, shading techniques, and effects to suit the needs of each application.

<span class="mw-page-title-main">Hollywood (graphics chip)</span>

Hollywood is the name of the graphics processing unit (GPU) used in Nintendo's Wii video game console. It was designed by ATI, and is manufactured using the same 90 nm or 65 nm CMOS process as Broadway, the Wii's central processing unit. Very few official details about Hollywood were released to the public by Nintendo, ATI, or any other company involved in the Wii's development. The Hollywood GPU is reportedly based on the GameCube's Flipper GPU and is clocked 50% higher at 243 MHz, though these clock rates have never been officially confirmed.

<span class="mw-page-title-main">Computer graphics</span> Graphics created using computers

Computer graphics deals with generating images and art with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing. It is often abbreviated as CG, or typically in the context of film as computer generated imagery (CGI). The non-artistic aspects of computer graphics are the subject of computer science research.

ULTRAY2000 is a concept chip for 3D graphics processing designed by Digital Media Professionals Inc. (DMP), a Japanese GPU design company. It was used for real-time 3D graphics. It was produced in 0.13µm TSMC manufacturing process and contained more than 100 million CMOS transistors, with GPU core clock running at 200MHz and its integrated memory controller having support for DDR-400 memory. DMP announced ULTRAY2000 concept chip on July 21, 2005, and its first exhibition was at SIGGRAPH 2005. The first sample shipments were scheduled for the fall of 2005. ULTRAY2000 adopted a design where a fixed graphics pipeline architecture coexists with an advanced instruction programmable core.

<span class="mw-page-title-main">Xbox technical specifications</span>

The Xbox technical specifications describe the various components of the Xbox video game console.

<span class="mw-page-title-main">PlayStation technical specifications</span> Overview of the technical specifications of the PlayStation

The PlayStation technical specifications describe the various components of the original PlayStation video game console.

This is a glossary of terms relating to computer graphics.

References

  1. "Digital Media Professionals Inc at Computex 2012". YouTube . Jun 7, 2012. Archived from the original on 2021-12-21. Retrieved Jun 4, 2021.
  2. "DMP Shows Capabilities of the PICA Platform with Demo from Futuremark". July 25, 2006. Retrieved June 4, 2021.
  3. "Zenji Nishikawa's "PICA200" course for 3D game fans by Zenji Nishikawa (Part 1)". July 15, 2010. Retrieved June 4, 2021.
  4. "Procedural texture generation unit and saving video memory". August 15, 2006. Archived from the original on August 26, 2010. Retrieved August 26, 2010.
  5. "Primitive processing and advanced shading architecture for embedded space - HPG 2011" (PDF). August 6, 2011. Retrieved June 4, 2021.
  6. 1 2 3 "Zenji Nishikawa's "PICA200" course for 3D game fans (Part 2)". July 16, 2010. Retrieved June 4, 2021.
  7. "Procedural texture generation unit and saving video memory". August 15, 2006. Archived from the original on August 26, 2010. Retrieved August 26, 2010.
  8. 1 2 3 4 5 "[Page64] DMP Inc. PICA graphics core" (PDF). EuroGraphics 2008, Crete. April 14–18, 2008.
  9. "K. Kolchin, CURVATURE BASED RENDERING METHOD AND DEVICE FOR TRANSLUCENT MATERIALS SUCH AS SKIN OF HUMAN BODY, JP2008250577 (A)". October 16, 2008.
  10. "Simon Green, GPU Gems 2, Chapter 16. Real-Time Approximations to Subsurface Scattering". August 15, 2006.
  11. "Press Release: DMP 3D Graphics IP core "PICA200" is adopted by Nintendo 3DS". Digital Media Professionals Inc. (DMP). June 21, 2010. Archived from the original on September 20, 2010. [html] "Press Release: DMP 3D Graphics IP core "PICA200" is adopted by Nintendo 3DS". Archived from the original on 2010-08-25. Retrieved 2010-08-26. [pdf]
  12. 1 2 "PICA 200 3D Graphics IP (product brochure)" (PDF). Digital Media Professionals Inc. (DMP). June 11, 2010. Archived from the original (PDF) on July 4, 2010.
  13. "The Nintendo 3DS Knows How to Make Fog, It's Built on a Chip - Siliconera". Archived from the original on 2017-10-16. Retrieved 2016-01-29.