Hollywood (graphics chip)

Last updated
ATI "Hollywood" GPU within the Wii console Hollywood gpu.png
ATI "Hollywood" GPU within the Wii console

The Hollywood graphics chip is the graphics processing unit (GPU) used in Nintendo's Wii video game console. It was designed by ATI (now AMD), and was manufactured using the same 90 nm or 65 nm (depending on the hardware revision) CMOS process [1] as Broadway , the Wii's central processing unit. Very few official details about Hollywood were released to the public by Nintendo, ATI, or any other company involved in the Wii's development. The Hollywood GPU is reportedly based on the GameCube's Flipper GPU and is clocked 50% higher at 243 MHz, [2] though these clock rates have never been officially confirmed.

Contents

Hollywood is a multi-chip module (MCM) package containing three dies under the cover in the Hollywood-A revision. The first of these three dies, codenamed Vegas, controls the I/O functions, RAM access, the Audio DSP, and the actual GPU with its embedded DRAM, and measures 8 × 9 mm. The other, codenamed Napa, holds 24 MB of "internal" 1T-SRAM and measures 13.5 × 7 mm. [3] A third, tiny die contains EEPROM. The Hollywood-1 revision, codenamed Bollywood, was fabricated on a 65 nm node and merges Napa and Vegas into a single die, resulting in a two-die MCM. [4]

Hardware capabilities

Note: ^ denotes speculation: using confirmed AMD GameCube data x 1.5, a crude but likely accurate way of calculating the Wii's results based on clock speeds and identical architecture.

Texture Environment Unit

The Texture Environment Unit (TEV) is a unique piece of hardware exclusive to the GameCube and Wii. The Wii inherited the TEV from Flipper, and the TEV is—to use an analogy from Factor 5 director Julian Eggebrecht—"like an elaborate switchboard that makes the wildest combinations of textures and materials possible." [5]

The TEV pipeline combines up to 8 textures in up to 16 stages at once. Each stage can apply a multitude of functions to the texture. This was frequently used to simulate pixel shader effects such as bump-mapping, or to perform effects such as cel shading. On the GameCube, Factor 5's Star Wars: Rogue Squadron II used the TEV for the targeting computer effect and the simulated volumetric fog. [5] In another scenario, Wave Race: Blue Storm used the TEV notably for water distortion (such as refraction) and other water effects.[ citation needed ] The Wii's TEV unit and TEV capabilities are no different from the GameCube's, excluding indirect performance advantages from the faster clock speeds.[ citation needed ]

Starlet

Hollywood contains an ARM926EJ-S core, which has been unofficially nicknamed Starlet. [6] [7] This embedded microprocessor runs an undocumented operating system called IOS and performs many of the Wii's I/O functions, including controlling the wireless functionality, USB, the SD card interface, the optical disc drive, the internal NAND flash storage, WiiConnect24 when the console is in standby mode, and other miscellaneous functions. [8] The Starlet acts as the security controller of the console, performing various cryptography functions; Starlet is designed to remain secure even if the Broadway is compromised. [8] Hollywood includes hardware implementations of AES [9] and SHA-1 [10] to speed up Starlet's security functionality. Communication between the Starlet and the Broadway is accomplished via an IPC mechanism. [8] Starlet has complete control over Broadway; the former can reboot the latter and supply it with code to execute at any time. [7]

Related Research Articles

<span class="mw-page-title-main">ATI Technologies</span> Canadian technology corporation

ATI Technologies Inc., commonly called ATI, was a Canadian semiconductor technology corporation based in Markham, Ontario, that specialized in the development of graphics processing units and chipsets. Founded in 1985, the company listed publicly in 1993 and was acquired by AMD in 2006. As a major fabrication-less or fabless semiconductor company, ATI conducted research and development in-house and outsourced the manufacturing and assembly of its products. With the decline and eventual bankruptcy of 3dfx in 2000, ATI and its chief rival Nvidia emerged as the two dominant players in the graphics processors industry, eventually forcing other manufacturers into niche roles.

The PowerPC 7xx is a family of third generation 32-bit PowerPC microprocessors designed and manufactured by IBM and Motorola. This family is called the PowerPC G3 by Apple Computer, which introduced it on November 10, 1997. The term "PowerPC G3" is often, and incorrectly, imagined to be a microprocessor when in fact a number of microprocessors from different vendors have been used. Such designations were applied to Mac computers such as the PowerBook G3, the multicolored iMacs, iBooks and several desktops, including both the Beige and Blue and White Power Macintosh G3s. The low power requirements and small size made the processors ideal for laptops and the name lived out its last days at Apple in the iBook.

<span class="mw-page-title-main">Graphics processing unit</span> Specialized electronic circuit; graphics accelerator

A graphics processing unit (GPU) is a specialized electronic circuit initially designed to accelerate computer graphics and image processing. After their initial design, GPUs were found to be useful for non-graphic calculations involving embarrassingly parallel problems due to their parallel structure. Other non-graphical uses include the training of neural networks and cryptocurrency mining.

<span class="mw-page-title-main">Wii</span> Home video game console by Nintendo

The Wii is a home video game console developed and marketed by Nintendo. It was released on November 19, 2006, in North America and in December 2006 for most other regions of the world. It is Nintendo's fifth major home game console, following the GameCube and is a seventh-generation console alongside Microsoft's Xbox 360 and Sony's PlayStation 3.

The R420 GPU, developed by ATI Technologies, was the company's basis for its 3rd-generation DirectX 9.0/OpenGL 2.0-capable graphics cards. Used first on the Radeon X800, the R420 was produced on a 0.13 micrometer low-K photolithography process and used GDDR-3 memory. The chip was designed for AGP graphics cards.

<span class="mw-page-title-main">Xenos (graphics chip)</span> GPU used in the Xbox 360

The Xenos is a custom graphics processing unit (GPU) designed by ATI, used in the Xbox 360 video game console developed and produced for Microsoft. Developed under the codename "C1", it is in many ways related to the R520 architecture and therefore very similar to an ATI Radeon X1800 XT series of PC graphics cards as far as features and performance are concerned. However, the Xenos introduced new design ideas that were later adopted in the TeraScale microarchitecture, such as the unified shader architecture. The package contains two separate dies, the GPU and an eDRAM, featuring a total of 337 million transistors.

<span class="mw-page-title-main">Radeon R100 series</span> Series of video cards

The Radeon R100 is the first generation of Radeon graphics chips from ATI Technologies. The line features 3D acceleration based upon Direct3D 7.0 and OpenGL 1.3, and all but the entry-level versions offloading host geometry calculations to a hardware transform and lighting (T&L) engine, a major improvement in features and performance compared to the preceding Rage design. The processors also include 2D GUI acceleration, video acceleration, and multiple display outputs. "R100" refers to the development codename of the initially released GPU of the generation. It is the basis for a variety of other succeeding products.

<span class="mw-page-title-main">Matrox Parhelia</span> GPU by Matrox

The Matrox Parhelia-512 is a graphics processing unit (GPU) released by Matrox in 2002. It has full support for DirectX 8.1 and incorporates several DirectX 9.0 features. At the time of its release, it was best known for its ability to drive three monitors and its Coral Reef tech demo.

<span class="mw-page-title-main">Broadway (processor)</span> 32-bit CPU for the Wii

Broadway is the codename of the 32-bit central processing unit (CPU) used in Nintendo's Wii home video game console. It was designed by IBM, and was initially produced using a 90 nm SOI process and later produced with a 65 nm SOI process.

<span class="mw-page-title-main">RSX Reality Synthesizer</span> GPU for the PlayStation 3

The RSX 'Reality Synthesizer' is a proprietary graphics processing unit (GPU) codeveloped by Nvidia and Sony for the PlayStation 3 game console. It is a GPU based on the Nvidia 7800GTX graphics processor and, according to Nvidia, is a G70/G71 hybrid architecture with some modifications. The RSX has separate vertex and pixel shader pipelines. The GPU makes use of 256 MB GDDR3 RAM clocked at 650 MHz with an effective transmission rate of 1.3 GHz and up to 224 MB of the 3.2 GHz XDR main memory via the CPU . Although it carries the majority of the graphics processing, the Cell Broadband Engine, the console's CPU, is also used complementarily for some graphics-related computational loads of the console.

<span class="mw-page-title-main">Xenon (processor)</span> CPU used in the Xbox 360

Microsoft XCPU, codenamed Xenon, is a CPU used in the Xbox 360 game console, to be used with ATI's Xenos graphics chip.

The Radeon R700 is the engineering codename for a graphics processing unit series developed by Advanced Micro Devices under the ATI brand name. The foundation chip, codenamed RV770, was announced and demonstrated on June 16, 2008 as part of the FireStream 9250 and Cinema 2.0 initiative launch media event, with official release of the Radeon HD 4800 series on June 25, 2008. Other variants include enthusiast-oriented RV790, mainstream product RV730, RV740 and entry-level RV710.

<span class="mw-page-title-main">Wii system software</span> Operating system for Nintendos Wii home video game console

The Wii system software is a discontinued set of updatable firmware versions and a software frontend on the Wii home video game console. Updates, which could be downloaded over the Internet or read from a game disc, allowed Nintendo to add additional features and software, as well as to patch security vulnerabilities used by users to load homebrew software. When a new update became available, Nintendo sent a message to the Wii Message Board of Internet-connected systems notifying them of the available update.

<span class="mw-page-title-main">Gekko (processor)</span> CPU for the GameCube

Gekko is a superscalar out-of-order 32-bit PowerPC microprocessor custom-made by IBM in 2000 for Nintendo to use as the CPU in their sixth generation game console, the GameCube, and later the Triforce Arcade Board.

PICA200 is a graphics processing unit (GPU) designed by Digital Media Professionals Inc. (DMP), a Japanese GPU design startup company, for use in embedded devices such as vehicle systems, mobile phones, cameras, and game consoles. The PICA200 is an IP Core which can be licensed to other companies to incorporate into their SOCs. It was most notably licensed for use in the Nintendo 3DS.

<span class="mw-page-title-main">Espresso (processor)</span> 32-bit CPU for the Wii U

Espresso is the codename of the 32-bit central processing unit (CPU) used in Nintendo's Wii U video game console. It was designed by IBM, and was produced using a 45 nm silicon-on-insulator process. The Espresso chip resides together with a GPU from AMD on an MCM manufactured by Renesas. It was revealed at E3 2011 in June 2011 and released in November 2012.

<span class="mw-page-title-main">Radeon 9000 series</span> Series of video cards

The R300 GPU, introduced in August 2002 and developed by ATI Technologies, is its third generation of GPU used in Radeon graphics cards. This GPU features 3D acceleration based upon Direct3D 9.0 and OpenGL 2.0, a major improvement in features and performance compared to the preceding R200 design. R300 was the first fully Direct3D 9-capable consumer graphics chip. The processors also include 2D GUI acceleration, video acceleration, and multiple display outputs.

<span class="mw-page-title-main">Xbox technical specifications</span>

The Xbox technical specifications describe the various components of the Xbox video game console.

<span class="mw-page-title-main">Intel Xe</span> Intel GPU architecture

Intel Xe, earlier known unofficially as Gen12, is a GPU architecture developed by Intel.

<span class="mw-page-title-main">MoSys</span>

MoSys, Inc., originally Monolithic System Technology (MoST), was a fabless semiconductor design company founded in 1991. The company primarily designed memory chips and were especially known for their Multibank DRAM and 1T-SRAM technologies—the latter used on Nintendo's Wii and GameCube video game consoles.

References

  1. "Wiiの概要 (Wii本体)" (in Japanese). Nintendo. Archived from the original on 2006-06-15. Retrieved 2007-01-03.
  2. "IGN: Revolution's Horsepower". IGN. 2006-03-29. Archived from the original on 2011-05-22. Retrieved 2006-12-23.
  3. Eda, Hiroki (2006-11-27). "PS3 VS Wii, Comparisons of Core LSI Chip Areas". Tech-On!. Archived from the original on 2007-01-03.
  4. "Guide - De-Lidding the Wii chips". BitBuilt - Giving Life to Old Consoles. Retrieved 2021-05-17.
  5. 1 2 Eggebrecht, Julian (November 14, 2001). "PGC interviews Factor 5's Julian Eggebrecht: Technically speaking" (Interview). Interviewed by Nintendo World Report (Planet GameCube). Archived from the original on April 10, 2021.
  6. "Hardware/Starlet". Wiibrew. Archived from the original on 16 May 2020. Retrieved 14 June 2020.
  7. 1 2 bushing (10 April 2008). "Wii System Software: a guided tour". HackMii — Notes from inside your Wii. Archived from the original on 20 September 2019. Retrieved 21 June 2020.
  8. 1 2 3 "IOS". Wiibrew. Archived from the original on 3 March 2020. Retrieved 21 June 2020.
  9. "Hardware/AES Engine". Wiibrew. Archived from the original on 14 June 2020. Retrieved 14 June 2020.
  10. "Hardware/SHA-1 Engine". Wiibrew. Archived from the original on 14 June 2020. Retrieved 14 June 2020.