Radeon HD 2000 series

Last updated
ATI Radeon HD 2000 series
Release dateJune 28, 2007;17 years ago (June 28, 2007)
CodenameRadeon R600 series
Architecture TeraScale 1 [ citation needed ]
Transistors180M 65nm (RV610)
  • 390M 65nm (RV630)
  • 700M 80nm (R600)
Cards
Entry-level2350, 2400
Mid-range2600
High-end2900
API support
DirectX Direct3D 10.0 [1]
Shader Model 4.0
OpenCL Close To Metal
OpenGL OpenGL 3.3 [2] [3]
History
Predecessor Radeon X1000 series
Successor Radeon HD 3000 series
Support status
Unsupported

The graphics processing unit (GPU) codenamed Radeon R600 is the foundation of the Radeon HD 2000 series and the FireGL 2007 series video cards developed by ATI Technologies. The HD 2000 cards competed with nVidia's GeForce 8 series.

Contents

Architecture

This article is about all products under the brand "Radeon HD 2000 Series". They all contain a GPU which implements TeraScale 1, ATI's first Unified shader model microarchitecture for PCs.

Video acceleration

The Unified Video Decoder (UVD) SIP core is on-die in the HD 2400 and the HD 2600. The HD 2900 GPU dies do not have a UVD core, as its stream processors were powerful enough to handle most of the steps of video acceleration in its stead except for entropy decoding and bitstream processing which are left for the CPU to perform. [4]

Other features

HDTV encoding support is implemented via the integrated AMD Xilleon encoder; the companion Rage Theater chip used on the Radeon X1000 series was replaced with the digital Theater 200 chip, providing VIVO capabilities.

For display outputs, all variants include two dual-link TMDS transmitters, except for HD 2400 and HD 3400, which include one single and one dual-link TMDS transmitters. Each DVI output includes dual-link HDCP encoder with on-chip decipher key. HDMI was introduced, supporting display resolutions up to 1,920×1,080, with integrated HD audio controller with 5.1-channel LPCM and AC3 encoding support. Audio is transmitted via DVI port, with specially designed DVI-to-HDMI dongle for HDMI output that carries both audio and video. [5]

All variants support CrossFireX technology. CrossFire efficiency was improved and shows performance approaching the theoretical maximum of twice the performance of a single card. [6] [7]

Desktop products

The R600 family is called the Radeon HD 2000 series, with the enthusiast segment being the Radeon HD 2900 series which originally comprised the Radeon HD 2900 XT with GDDR3 memory released on May 14, and the higher-clocked GDDR4 version in early July.

The mainstream and budget segment products were the Radeon HD 2600 and Radeon HD 2400 series respectively, both launched June 28, 2007. [8]

Previously there were no HD 2000 series products being offered in the performance segment while ATI used models from the previous generation to address that target market; this situation did not change until the release of variants of the Radeon HD 2900 series, the Radeon HD 2900 Pro and GT, which filled the gap of the performance market for a short period of time.

Radeon HD 2400

ATI Radeon HD 2400 XT Sapphire ATI Radeon HD 2400 XT.jpg
ATI Radeon HD 2400 XT

The Radeon HD 2400 series was based on the codenamed RV610 GPU. It had 180 million transistors on a 65 nm fabrication process. The Radeon HD 2400 series used a 64-bit-wide memory bus. [9] The die size is 85 mm2. [10] The official PCB design implements only a passive-cooling heatsink instead of a fan, and official claims of power consumption are as little as 35 W.[ citation needed ] The core has 16 kiB unified vertex/texture cache away from dedicated vertex cache and L1/L2 texture cache used in higher end model.

Reports has that the first batch of the RV610 core (silicon revision A12), only being released to system builders, has a bug that hindered the UVD from working properly, but other parts of the die operated normally. Those products were officially supported with the release of Catalyst 7.10 driver, which the cards were named as Radeon HD 2350 series. [11]

Several reports from owners of HD 2400 Pro suggest the card do not fully support hardware decoding for all H.264/VC-1 videos. The device driver, even with the latest stable version, seem to only honor hardware decoding for formats specified in the Blu-ray and HD-DVD specification. As a result of such restriction, the card is not deemed very useful for hardware video decoding since the majority of the H.264/VC-1 videos on the net are not encoded in those formats (even though the hardware itself is fully capable of doing such decoding work). This device driver restriction has led to the development of a third party driver patch, "ExDeus ATI HD Registry Tweak", to unlock the potential of HD 2400 Pro for full support of H.264/VC-1 hardware video decoding. [12] [13] [14]

Radeon HD 2600

The Radeon HD 2600 series was based on the codenamed RV630 GPU and packed 390 million transistors on a 65 nm fabrication process. The Radeon HD 2600-series video cards included GDDR3 support, a 128-bit memory ring bus and 4-phase digital PWM, [9] spanning a die size of 153 mm2. [15] Neither of the GDDR3 reference PCI-E designs required additional power connectors whereas the HD 2600 Pro and XT AGP variants required additional power through either 4-pin or 6-pin power connectors, [16] Official claims state that the Radeon HD 2600 series consumes as little as 45 W of power.[ citation needed ]

Radeon HD 2600 X2

The Radeon HD 2600 X2 is a dual-GPU product which includes 2 RV630 dies on a single PCB with a PCI-E bridge splitting the PCI-E ×16 bandwidth into two groups of PCI-E ×8 lanes (each 2.0 Gbit/s). The card provides 4 DVI outputs or HDMI outputs via dongle and supports CrossFire configurations. AMD calls this product the Radeon HD 2600 X2 as seen by some vendors and as observed inside the INF file of Catalyst 7.9 version 8.411. Sapphire and other vendors including PowerColor and GeCube have either announced or demonstrated their respective dual GPU (connected by crossfire) products. [17] Catalyst 7.9 added support for this hardware in September 2007. However, AMD did not provide much publicity to promote it. A vendor may offer cards containing 256 MiB, 512 MiB, or 1 GiB of video memory. Although the memory technology utilized is at a vendor's discretion, most vendors have opted for GDDR3 and DDR2 due to lower manufacturing cost and positioning of this product for the mainstream rather than performance market segment and also a big success.

Radeon HD 2900

The Radeon HD 2900 series was based on the codenamed R600 GPU and was launched on May 14, 2007. R600 packed 700 million transistors on an 80 nm fabrication process and had a 420 mm2 die size. [18] The Radeon HD 2900 XT was launched with 320 Stream Processors and a core clock of 743 MHz. The initial model was released with 512 MB of GDDR3 clocked at 828 MHz (1,656 MHz effective) with a 512-bit interface. A couple months after release ATI released the 1 GB GDDR4 model with a memory frequency of 1,000 MHz (2,000 MHz effective). Performance was on par compared to the 512 MB card. The HD 2900 XT introduced a lot of firsts. It was the first to implement a digital PWM on board (7-phase PWM), first to use an 8-pin PEG connector, and was the first graphics card from ATI to support DirectX 10.

The Radeon HD 2900 Pro was clocked lower at 600 MHz core and 800 MHz memory (1,600 MHz effective), configured with 512 MB of GDDR3 or 1 GB of GDDR4. It was rumored that some of the 1 GB GDDR4 models were manufactured using a 12" cooler borrowed from the prototype HD 2900 XTX. [19] The HD 2900 Pro had both 256-bit and 512-bit interface options for the 512 MB versions of the card. A few AIB partners offered a black and silver cooler exclusive to the 256-bit model of the Pro. [20] [21]

The Radeon HD 2900 GT was a 240 Stream Processor variant clocked the same as the HD 2900 Pro, but with 256 MB of video memory on a 256-bit interface.

Mobile products

All Mobility Radeon HD 2000 series share the same feature set support as their desktop counterparts, as well as the addition of the battery-conserving PowerPlay 7.0 features, which are augmented from the previous generation's PowerPlay 6.0.

The Mobility Radeon HD 2300 is a budget product which includes UVD in silica but lacks unified shader architecture and DirectX 10.0/SM 4.0 support, limiting support to DirectX 9.0c/SM 3.0 using the more traditional architecture of the previous generation. A high-end variant, the Mobility Radeon HD 2700, with higher core and memory frequencies than the Mobility Radeon HD 2600, was released in mid-December 2007.

The Mobility Radeon HD 2400 is offered in two model variants; the standard HD 2400 and the HD 2400 XT. [22]

The Mobility Radeon HD 2600 is also available in the same two flavors; the plain HD 2600 and, at the top of the mobility lineup, the HD 2600 XT. [23]

The half-generation update treatment had also applied to mobile products. Announced prior to CES 2008 was the Mobility Radeon HD 3000 series. Released in the first quarter of 2008, the Mobility Radeon HD 3000 series consisted of two families, the Mobility Radeon HD 3400 series and the Mobility Radeon HD 3600 series. The Mobility Radeon HD 3600 series also featured the industry's first implementation of on-board 128-bit GDDR4 memory.

About the time of late March to early April, 2008, AMD renewed the device ID list on its website [24] with the inclusion of Mobility Radeon HD 3850 X2 and Mobility Radeon HD 3870 X2 and their respective device IDs. Later in Spring IDF 2008 held in Shanghai, a development board of the Mobility Radeon HD 3870 X2 was demonstrated alongside a Centrino 2 platform demonstration system. [25] The Mobility Radeon HD 3870 X2 was based on two M88 GPUs with the addition of a PCI Express switch chip on a single PCB. The development board used for demonstration was a PCI Express 2.0 ×16 card, while the final product is expected to be on AXIOM/MXM modules.

Chipset table

ModelLaunch
Code name
Fab (nm)
Transistors (million)
Die size (mm2)
Bus interface
Clock rate
Core config
Fillrate MemoryProcessing power
(GFLOPS)
TDP (Watts)
Crossfire support
API support (version)
Release price (USD)
Core (MHz)
Memory (MHz)
Pixel (GP/s)
Texture (GT/s)
Size (MB)
Bandwidth (GB/s)
Bus type
Bus width (Bit)
Max.
Direct3D
Radeon HD 2350June 28, 2007RV6106518085PCIe 1.0 ×1652540040:4:42.102.1064 onboard + up to 256 system3.20DDR23242.020No10.03.3APP Stream Only ?
Radeon HD 2400 PROPCIe 1.0 ×16
AGP
PCI
128
256
512
6.4064$50–55
Radeon HD 2400 XTPCIe 1.0 ×16650500
700
2.602.602568.0
11.2
DDR2
GDDR3
52.025$75–85
Radeon HD 2600 PRORV630390153PCIe 1.0 ×16
AGP
600120:8:42.404.80256
512
16.0
22.4
128144.035$89–99
Radeon HD 2600 XT800800
1100
3.206.4025.6
35.2
GDDR3
GDDR4
192.045
50
4-way CrossFire $119 (GDDR3) $149 (GDDR4)
Radeon HD 2900 GTNovember 6, 2007R600 GT80720420PCIe 1.0 ×16601800240:12:127.217.2151.2GDDR3256288.5150$200
Radeon HD 2900 PROSeptember 25, 2007R600 PRO600800
925
320:16:169.69.6512
1024
51.2
102.4
118.4
GDDR3
GDDR4
256
512
384.0200$250 (GDDR3)
$300 (GDDR4)
Radeon HD 2900 XTMay 14, 2007R600 XT743828
1000
11.911.9105.6
128.0
GDDR3
GDDR4
512475.5215$399

Mobility Radeon

OpenGL 3.3 is possible with latest drivers for all RV6xx.

ModelLaunch
Model number
Code name
Fab (nm)
Core clock (MHz)
Memory clock (MHz)
Core config
Memory
API compliance (version)
Processing power
(GFLOPS)
Notes
Pixel (GP/s)
Texture (GT/s)
Size (MB)
Bandwidth (GB/s)
Bus type
Bus width (bit)
Mobility Radeon X2300March 1, 2007M64RV51590PCIe ×164804002:4:4:411.921.921286.4
12.8
DDR
DDR2
GDDR3
64
128
9.0c2.0Un­knownrenamed product, HyperMemory, no UVD, PowerPlay 6.0
Mobility Radeon X2500June 1, 2007M66RV5304605:12:4:411.841.8425612.8128Un­knownbased on X1600/1700, HM up to 768 Mb, no UVD, PowerPlay 6.0
Mobility Radeon HD 2300March 1, 2007M71RV5154802:4:4:411.921.92128
256
512
6.4
12.8
64
128
Un­knownsame as X2300, but with UVD, PowerPlay 6.0
Mobility Radeon HD 2400May 14, 2007M72SRV6106545040:4:421.81.8256+ Hyper Memory6.4DDR26410.02.0 (3.3)36 UVD, PowerPlay 7.0
Mobility Radeon HD 2400 XTM72M600
600
400
700
2.42.46.4
11.2
DDR2
GDDR3
48
Mobility Radeon HD 2600M76MRV630500
500
400
600
120:8:422.04.012.8
19.2
128120
Mobility Radeon HD 2600 XTM76XT6807502.725.4424GDDR3168
Mobility Radeon HD 2700December 12, 2007M766507002.65.2256+ Hyper Memory (total 768)22.4

1 Vertex shaders  : Pixel shaders  : Texture mapping units  : Render output units.
2 Unified Shaderss  : Texture mapping units  : Render output units

Radeon feature matrix

The following table shows features of AMD/ATI's GPUs (see also: List of AMD graphics processing units).

Name of GPU series Wonder Mach 3D Rage Rage Pro Rage 128 R100 R200 R300 R400 R500 R600 RV670 R700 Evergreen Northern
Islands
Southern
Islands
Sea
Islands
Volcanic
Islands
Arctic
Islands
/Polaris
Vega Navi 1x Navi 2x Navi 3x
Released19861991Apr
1996
Mar
1997
Aug
1998
Apr
2000
Aug
2001
Sep
2002
May
2004
Oct
2005
May
2007
Nov
2007
Jun
2008
Sep
2009
Oct
2010
Jan
2012
Sep
2013
Jun
2015
Jun 2016, Apr 2017, Aug 2019Jun 2017, Feb 2019Jul
2019
Nov
2020
Dec
2022
Marketing Name WonderMach3D
Rage
Rage
Pro
Rage
128
Radeon
7000
Radeon
8000
Radeon
9000
Radeon
X700/X800
Radeon
X1000
Radeon
HD 2000
Radeon
HD 3000
Radeon
HD 4000
Radeon
HD 5000
Radeon
HD 6000
Radeon
HD 7000
Radeon
200
Radeon
300
Radeon
400/500/600
Radeon
RX Vega, Radeon VII
Radeon
RX 5000
Radeon
RX 6000
Radeon
RX 7000
AMD supportDark Red x.svgYes check.svg
Kind2D3D
Instruction set architecture Not publicly known TeraScale instruction set GCN instruction set RDNA instruction set
Microarchitecture TeraScale 1
(VLIW)
TeraScale 2
(VLIW5)
TeraScale 2
(VLIW5)

up to 68xx
TeraScale 3
(VLIW4)

in 69xx [26] [27]
GCN 1st
gen
GCN 2nd
gen
GCN 3rd
gen
GCN 4th
gen
GCN 5th
gen
RDNA RDNA 2 RDNA 3
TypeFixed pipeline [lower-alpha 1] Programmable pixel & vertex pipelines Unified shader model
Direct3D 5.06.07.08.19.0
11 (9_2)
9.0b
11 (9_2)
9.0c
11 (9_3)
10.0
11 (10_0)
10.1
11 (10_1)
11 (11_0)11 (11_1)
12 (11_1)
11 (12_0)
12 (12_0)
11 (12_1)
12 (12_1)
11 (12_1)
12 (12_2)
Shader model 1.42.0+2.0b3.04.04.15.05.15.1
6.5
6.7
OpenGL 1.11.21.32.1 [lower-alpha 2] [28] 3.34.5 [29] [30] [31] [lower-alpha 3] 4.6
Vulkan 1.01.21.3
OpenCL Close to Metal 1.1 (not supported by Mesa)1.2+ (on Linux: 1.1+ (no Image support on clover, with by rustiCL) with Mesa, 1.2+ on GCN 1.Gen)2.0+ (Adrenalin driver on Win7+)
(on Linux ROCM, Mesa 1.2+ (no Image support in clover, but in rustiCL with Mesa, 2.0+ and 3.0 with AMD drivers or AMD ROCm), 5th gen: 2.2 win 10+ and Linux RocM 5.0+
2.2+ and 3.0 windows 8.1+ and Linux ROCM 5.0+ (Mesa rustiCL 1.2+ and 3.0 (2.1+ and 2.2+ wip)) [32] [33] [34]
HSA / ROCm Yes check.svg ?
Video decoding ASIC Avivo/UVD UVD+ UVD 2 UVD 2.2 UVD 3 UVD 4 UVD 4.2 UVD 5.0 or 6.0 UVD 6.3 UVD 7 [35] [lower-alpha 4] VCN 2.0 [35] [lower-alpha 4] VCN 3.0 [36] VCN 4.0
Video encoding ASIC VCE 1.0 VCE 2.0 VCE 3.0 or 3.1 VCE 3.4 VCE 4.0 [35] [lower-alpha 4]
Fluid Motion [lower-alpha 5] Dark Red x.svgYes check.svgDark Red x.svg ?
Power saving ? PowerPlay PowerTune PowerTune & ZeroCore Power  ?
TrueAudio Via dedicated DSP Via shaders
FreeSync 1
2
HDCP [lower-alpha 6]  ?1.42.22.3 [37]
PlayReady [lower-alpha 6] 3.0Dark Red x.svg3.0
Supported displays [lower-alpha 7] 1–222–6 ?
Max. resolution  ?2–6 ×
2560×1600
2–6 ×
4096×2160 @ 30 Hz
2–6 ×
5120×2880 @ 60 Hz
3 ×
7680×4320 @ 60 Hz [38]

7680×4320 @ 60 Hz PowerColor
7680x4320

@165 HZ

/drm/radeon [lower-alpha 8] Yes check.svg
/drm/amdgpu [lower-alpha 8] Experimental [39] Optional [40] Yes check.svg
  1. The Radeon 100 Series has programmable pixel shaders, but do not fully comply with DirectX 8 or Pixel Shader 1.0. See article on R100's pixel shaders.
  2. R300, R400 and R500 based cards do not fully comply with OpenGL 2+ as the hardware does not support all types of non-power of two (NPOT) textures.
  3. OpenGL 4+ compliance requires supporting FP64 shaders and these are emulated on some TeraScale chips using 32-bit hardware.
  4. 1 2 3 The UVD and VCE were replaced by the Video Core Next (VCN) ASIC in the Raven Ridge APU implementation of Vega.
  5. Video processing for video frame rate interpolation technique. In Windows it works as a DirectShow filter in your player. In Linux, there is no support on the part of drivers and / or community.
  6. 1 2 To play protected video content, it also requires card, operating system, driver, and application support. A compatible HDCP display is also needed for this. HDCP is mandatory for the output of certain audio formats, placing additional constraints on the multimedia setup.
  7. More displays may be supported with native DisplayPort connections, or splitting the maximum resolution between multiple monitors with active converters.
  8. 1 2 DRM (Direct Rendering Manager) is a component of the Linux kernel. AMDgpu is the Linux kernel module. Support in this table refers to the most current version.

Graphics device drivers

AMD's proprietary graphics device driver "Catalyst"

AMD Catalyst is being developed for Microsoft Windows and Linux. As of July 2014, other operating system are not officially supported. This may be different for the AMD FirePro brand, which is based on identical hardware but features OpenGL-certified graphics device drivers.

AMD Catalyst supports of course all features advertised for the Radeon brand.

Microsoft Windows

The Purple Pill tool issue, which could allow unsigned drivers to be loaded into Windows Vista and tamper with the operating system kernel, [41] was resolved in the Catalyst 7.8 release (version 8.401). [42] The AVIVO video converter for Windows Vista, and color temperature control in Catalyst Control Center was added with the release of Catalyst 7.9, package version 8.411. Software CrossFire was enabled for HD 2600 and HD 2400 series video cards with the release of Catalyst 7.10 (package version 8.421)

The Catalyst 8.1, package version 8.451, supports for MultiView technology for accelerated OpenGL rendering on multiple video card setup (CrossFire). The driver also allows CrossFire configurations for Radeon HD 3850 and HD 3870 video cards. [43] [44]

The Catalyst 8.3 is described by AMD as a milestone release, [45] supporting DirectX 10.1, ATI CrossFire X technology and allowing the mixing of different Radeon HD 3800 series video cards to form a CrossFire X setup with 2 to 4 GPUs. Catalyst 8.3 introduced to new video controls to further enhance the video playback quality, these controls includes edge enhancement and noise reduction settings. There is also the support for extended desktop in CrossFire X mode. The anti-aliasing support for Unreal Engine 3.0 in DirectX 9.0 games, support for CFAA filters (wide tent and box tent) to be enabled when Super AA is enabled, and other features as developer support for hardware surface tessellation, hardware accelerated wide aspect ratio LCD scaling, HydraVision support for Windows Vista allowing to add maximum 9 virtual desktops and new Folding@home client are also officially supported in this release.

The Catalyst 8.5, package version 8.493 [46] brought new features include component video with 480i and 480p resolutions, SECAM TV output support, 1080p HDTV custom mode via HDMI, 1080p24 (1080p resolution at 24 Hz) support, HDMI Audio for non-standard TV modes (CEA 861b), support for adaptive anti-aliasing (and later, in Catalyst 8.6, also support for custom filters [47] ) under OpenGL, Windows XP SP3 support and un-install utility enhancements. The driver also includes performance improvements and fixes some instability issues and rendering issues on some games.

The Radeon HD 2000 series has been transitioned to legacy support, where drivers will be updated only to fix bugs instead of being optimized for new applications. [48]

Current Catalyst drivers do not support the AGP versions of Radeon HD 2000/3000 series cards with RIALTO bridge. Installing Catalyst drivers on those cards will yield the following error message: "setup did not find a driver compatible with your current hardware or operating system." or simply fail outright. The AGP cards in question are supported unofficially by ATI/AMD with a hot-fixed Catalyst driver-set each month since May 2008 with the Catalyst 8.5 hotfix. [49] Their PCI vendor IDs are listed below: [50]

GPU coreProductPCI device ID
RV610Radeon HD 2400 Pro94C4
RV630Radeon HD 2600 Pro9587
RV630Radeon HD 2600 XT9586

Free and open-source graphics device driver "Radeon"

The free and open-source drivers are primarily developed on Linux and for Linux, but have been ported to other operating systems as well. Each driver is composed out of five parts:

  1. Linux kernel component Direct Rendering Manager (DRM)
  2. Linux kernel component KMS driver: basically the device driver for the display controller
  3. user-space component libDRM
  4. user-space component in Mesa 3D;
  5. a special and distinct 2D graphics device driver for X.Org Server, which if finally about to be replaced by Glamor

The free and open-source "Radeon" graphics driver supports most of the features implemented into the Radeon line of GPUs. [51]

Documentation release

The free and open-source "Radeon" graphics device drivers are not reverse engineered, but based on documentation released by AMD. [52]

Initial register documentation and parser code to execute the AtomBIOS ROM routines were released in September 2007. The R600 family Instruction Set Architecture guide was released on June 11, 2008. [53] Sample code and register headers for the R600 and R700 3D engines were released in December 2008. AMD released the specifications for both the r6xx and r7xx families on January 26, 2009. [54]

See also

Related Research Articles

<span class="mw-page-title-main">Radeon</span> Brand of computer products

Radeon is a brand of computer products, including graphics processing units, random-access memory, RAM disk software, and solid-state drives, produced by Radeon Technologies Group, a division of AMD. The brand was launched in 2000 by ATI Technologies, which was acquired by AMD in 2006 for US$5.4 billion.

<span class="mw-page-title-main">AMD FirePro</span> Brand by AMD

AMD FirePro was AMD's brand of graphics cards designed for use in workstations and servers running professional Computer-aided design (CAD), Computer-generated imagery (CGI), Digital content creation (DCC), and High-performance computing/GPGPU applications. The GPU chips on FirePro-branded graphics cards are identical to the ones used on Radeon-branded graphics cards. The end products differentiate substantially by the provided graphics device drivers and through the available professional support for the software. The product line is split into two categories: "W" workstation series focusing on workstation and primarily focusing on graphics and display, and "S" server series focused on virtualization and GPGPU/High-performance computing.

The R520 is a graphics processing unit (GPU) developed by ATI Technologies and produced by TSMC. It was the first GPU produced using a 90 nm photolithography process.

ATI Avivo is a set of hardware and low level software features present on the ATI Radeon R520 family of GPUs and all later ATI Radeon products. ATI Avivo was designed to offload video decoding, encoding, and post-processing from a computer's CPU to a compatible GPU. ATI Avivo compatible GPUs have lower CPU usage when a player and decoder software that support ATI Avivo is used. ATI Avivo has been long superseded by Unified Video Decoder (UVD) and Video Coding Engine (VCE).

The Radeon R700 is the engineering codename for a graphics processing unit series developed by Advanced Micro Devices under the ATI brand name. The foundation chip, codenamed RV770, was announced and demonstrated on June 16, 2008 as part of the FireStream 9250 and Cinema 2.0 initiative launch media event, with official release of the Radeon HD 4800 series on June 25, 2008. Other variants include enthusiast-oriented RV790, mainstream product RV730, RV740 and entry-level RV710.

Unified Video Decoder is the name given to AMD's dedicated video decoding ASIC. There are multiple versions implementing a multitude of video codecs, such as H.264 and VC-1.

<span class="mw-page-title-main">Radeon HD 5000 series</span> Series of video cards

The Evergreen series is a family of GPUs developed by Advanced Micro Devices for its Radeon line under the ATI brand name. It was employed in Radeon HD 5000 graphics card series and competed directly with Nvidia's GeForce 400 series.

AMD PowerPlay is the brand name for a set of technologies for the reduction of the energy consumption implemented in several of AMD's graphics processing units and APUs supported by their proprietary graphics device driver "Catalyst". AMD PowerPlay is also implemented into ATI/AMD chipsets which integrated graphics and into AMD's Imageon handheld chipset, that was sold to Qualcomm in 2008.

<span class="mw-page-title-main">AMD Hybrid Graphics</span> Line of discrete and integrated graphics processing units

AMD Hybrid Graphics technology, is a collective brand from AMD for its Radeon line of discrete and integrated GPU, promoting higher performance and productivity while saving energy consumption in GPUs.

<span class="mw-page-title-main">Radeon HD 6000 series</span> Series of video cards

The Northern Islands series is a family of GPUs developed by Advanced Micro Devices (AMD) forming part of its Radeon-brand, based on the 40 nm process. Some models are based on TeraScale 2 (VLIW5), some on the new TeraScale 3 (VLIW4) introduced with them.

<span class="mw-page-title-main">Radeon HD 7000 series</span> Series of video cards

The Radeon HD 7000 series, codenamed "Southern Islands", is a family of GPUs developed by AMD, and manufactured on TSMC's 28 nm process.

<span class="mw-page-title-main">Radeon HD 8000 series</span> Family of GPUs by AMD

The Radeon HD 8000 series is a family of computer GPUs developed by AMD. AMD was initially rumored to release the family in the second quarter of 2013, with the cards manufactured on a 28 nm process and making use of the improved Graphics Core Next architecture. However the 8000 series turned out to be an OEM rebadge of the 7000 series.

The graphics processing unit (GPU) codenamed the Radeon R600 is the foundation of the Radeon HD 2000/3000 series and the FireGL 2007 series video cards developed by ATI Technologies.

Radeon X800 is a series of graphics cards designed by ATI Technologies Inc. introduced in May 2004.

The Radeon X700 (RV410) series replaced the X600 in September 2004. X700 Pro is clocked at 425 MHz core, and produced on a 0.11 micrometre process. RV410 used a layout consisting of 8 pixel pipelines connected to 4 ROPs while maintaining the 6 vertex shaders of X800. The 110 nm process was a cost-cutting process, designed not for high clock speeds but for reducing die size while maintaining high yields. An X700 XT was planned for production, and reviewed by various hardware web sites, but was never released. It was believed that X700 XT set too high of a clock ceiling for ATI to profitably produce. X700 XT was also not adequately competitive with nVidia's impressive GeForce 6600GT. ATI would go on produce a card in the X800 series to compete instead.

ATI released the Radeon X300 and X600 boards. These were based on the RV370 and RV380 GPU respectively. They were nearly identical to the chips used in Radeon 9550 and 9600, only differing in that they were native PCI Express offerings. These were very popular for Dell and other OEM companies to sell in various configurations; connectors: DVI vs. DMS-59, card height: full-height vs. half-height.

Video Code Engine is AMD's video encoding application-specific integrated circuit implementing the video codec H.264/MPEG-4 AVC. Since 2012 it was integrated into all of their GPUs and APUs except Oland.

<span class="mw-page-title-main">AMD Eyefinity</span> Brand of AMD video card products

AMD Eyefinity is a brand name for AMD video card products that support multi-monitor setups by integrating multiple display controllers on one GPU. AMD Eyefinity was introduced with the Radeon HD 5000 series "Evergreen" in September 2009 and has been available on APUs and professional-grade graphics cards branded AMD FirePro as well.

TeraScale is the codename for a family of graphics processing unit microarchitectures developed by ATI Technologies/AMD and their second microarchitecture implementing the unified shader model following Xenos. TeraScale replaced the old fixed-pipeline microarchitectures and competed directly with Nvidia's first unified shader microarchitecture named Tesla.

References

  1. "Driver Support for AMD Radeon HD 4000, HD 3000, HD 2000 and older Series". AMD . Retrieved 2018-04-21.
  2. "Mesamatrix". mesamatrix.net. Retrieved 2018-04-22.
  3. "RadeonFeature". X.Org Foundation . Retrieved 2018-04-20.
  4. Wasson, Scott (May 25, 2007). "Radeon HD 2900 XT lacks UVD video acceleration". The Tech Report. Retrieved February 20, 2016.
  5. DailyTech report, retrieved December 7, 2007
  6. Wasson, Scott. AMD Radeon HD 2900 XT graphics processor: R600 revealed, Tech Report, May 14, 2007
  7. Wilson, Derek. ATI Radeon HD 2900 XT: Calling a Spade a Spade: Multi-GPU Performance - Prey, AnandTech, May 14, 2007.
  8. HD2400 & HD2600 Press release
  9. 1 2 AMD official press release
  10. Beyond3D RV610 chip reference, retrieved September 25, 2007
  11. Fudzilla report, retrieved October 31, 2007 Archived November 12, 2007, at the Wayback Machine
  12. Official Page for ExDeus ATI HD Registry Tweak
  13. AVSForum.com: Details on the registry settings for ExDeus ATI HD Registry Tweak
  14. AVSForum.com: Details on the effects of each setting for ExDeus ATI HD Registry Tweak
  15. Beyond3D RV630 chip reference, retrieved September 25, 2007
  16. Sapphire HD2K Product Matrix
  17. Beyond3D report, retrieved September 13, 2007
  18. Beyond3D R600 review, retrieved September 25, 2007
  19. "Radeon HD 2900 PRO 1GB Out Now: Foot-long Heatsink Optional". WIRED. Retrieved 2018-10-26.
  20. "ATI Radeon HD 2900 PRO Specs". TechPowerUp. Retrieved 2018-10-26.
  21. "HIS Unveils ATI Radeon HD 2900 Pro 512MB PCIe". TechPowerUp. Retrieved 2018-10-26.
  22. Mobility Radeon HD 2400 specifications Archived 2010-04-02 at the Wayback Machine and Mobility Radeon HD 2400 XT specifications Archived 2010-02-09 at the Wayback Machine
  23. HD 2600 specifications Archived 2010-03-05 at the Wayback Machine and HD 2600 XT specifications Archived 2010-02-11 at the Wayback Machine
  24. ATI Vendor ID page Archived 2010-06-19 at the Wayback Machine
  25. Hexus.net report: Welcome to the world's fastest laptop, brought to you by Intel and ATI, retrieved April 8, 2008
  26. "AMD Radeon HD 6900 (AMD Cayman) series graphics cards". HWlab. hw-lab.com. December 19, 2010. Archived from the original on August 23, 2022. Retrieved August 23, 2022. New VLIW4 architecture of stream processors allowed to save area of each SIMD by 10%, while performing the same compared to previous VLIW5 architecture
  27. "GPU Specs Database". TechPowerUp. Retrieved August 23, 2022.
  28. "NPOT Texture (OpenGL Wiki)". Khronos Group. Retrieved February 10, 2021.
  29. "AMD Radeon Software Crimson Edition Beta". AMD . Retrieved 2018-04-20.
  30. "Mesamatrix". mesamatrix.net. Retrieved 2018-04-22.
  31. "RadeonFeature". X.Org Foundation . Retrieved 2018-04-20.
  32. "AMD Radeon RX 6800 XT Specs". TechPowerUp. Retrieved January 1, 2021.
  33. "AMD Launches The Radeon PRO W7500/W7600 RDNA3 GPUs". Phoronix. 3 August 2023. Retrieved 4 September 2023.
  34. "AMD Radeon Pro 5600M Grafikkarte". TopCPU.net (in German). Retrieved 4 September 2023.
  35. 1 2 3 Killian, Zak (March 22, 2017). "AMD publishes patches for Vega support on Linux". Tech Report. Retrieved March 23, 2017.
  36. Larabel, Michael (September 15, 2020). "AMD Radeon Navi 2 / VCN 3.0 Supports AV1 Video Decoding". Phoronix. Retrieved January 1, 2021.
  37. Edmonds, Rich (February 4, 2022). "ASUS Dual RX 6600 GPU review: Rock-solid 1080p gaming with impressive thermals". Windows Central. Retrieved November 1, 2022.
  38. "Radeon's next-generation Vega architecture" (PDF). Radeon Technologies Group (AMD). Archived from the original (PDF) on September 6, 2018. Retrieved June 13, 2017.
  39. Larabel, Michael (December 7, 2016). "The Best Features of the Linux 4.9 Kernel". Phoronix . Retrieved December 7, 2016.
  40. "AMDGPU" . Retrieved December 29, 2023.
  41. DailyTech report
  42. "ATI patches 'purple pill'". 2007-08-18. Archived from the original on 2007-08-18. Retrieved 2023-09-12.
  43. Fudzilla review, retrieved February 15, 2008 Archived February 12, 2008, at the Wayback Machine
  44. Legit Reviews review, retrieved February 15, 2008
  45. Catalyst 8.3 release notes, retrieved March 5, 2008
  46. Catalyst 8.4 release notes, retrieved April 17, 2008
  47. "Advanced Micro Devices, Inc. - Unauthorized Download". A248.e.akamai.net. 2011-09-10. Retrieved 2011-09-19.
  48. "Driver Support for AMD Radeon™ HD 4000, HD 3000, HD 2000 Series and Older Graphics Products". AMD.
  49. AGP issue on AMD support page
  50. guru3D discussion thread
  51. "RadeonFeature". Xorg.freedesktop.org. Retrieved 2014-07-06.
  52. "AMD Developer Guideds". Archived from the original on 2013-07-16.
  53. Advanced Micro Devices, Inc. R600-Family Instruction Set Architecture Archived 2009-02-05 at the Wayback Machine , X.org website, June 11, 2008.
  54. Advanced Micro Devices, Inc. Radeon R6xx/R7xx 3D Register Reference Guide Archived 2009-02-05 at the Wayback Machine , X.org website, January 26, 2009.