PKS 0420-014 | |
---|---|
Observation data (J2000.0 epoch) | |
Constellation | Eridanus |
Right ascension | 04h 23m 15.800s |
Declination | −01° 20′ 33.066″ |
Redshift | 0.916090 |
Heliocentric radial velocity | 264,637 km/s |
Distance | 7.437 Gly |
Apparent magnitude (V) | 17.0 |
Apparent magnitude (B) | 17.5 |
Characteristics | |
Type | Blazar, BL Lac, HPQ |
Other designations | |
FASTT 159, LEDA 75147, 4FGL J0423.3-0120, OA 129, IRAS 04207-0127, QSO B0420-014, INTREF 181, PKS 0420-01 |
PKS 0420-014 is a blazar [1] located in the constellation of Eridanus. This is a high polarized quasar [2] [3] with a redshift of (z) 0.915, [4] first discovered as an astronomical radio source by astronomers in 1975. [5] The radio spectrum of this source appears to be flat, making it a flat-spectrum radio quasar (FRSQ). [6] [7]
PKS 0420-014 is found to be violently variable on the electromagnetic spectrum from long-centimeter to short-millimeter wavelengths. [8] It is a source of gamma ray activity, [9] [8] [10] showing a flux of (E>100 MeV) of (0.8 ± -0.2) 10-6 photons cm s-2 at the time of its high state, when observed by the Large Area Telescope in January 2010. [11]
Additionally, optical flares not associated with gamma ray activity were observed in PKS 0420-014. In 1979 a flare displayed a magnitude increase of 1.3 in 5 days, which was followed by a decreasing magnitude of 1.7 in 23 days. Its flare recorded between February and March 1992, was the highest observed optical state observed during the period EGRET recorded the highest gamma ray flux density. [12] Subsequent flares were detected in July 2012 [13] and in October 2020, when it reached magnitude15.25 on both days after a state of quiescence. [2]
The source of PKS 0420-014 at milliarcsecond (mas) resolutions shows a symmetrical and unresolved core. This is interpreted as the case of either the jet being aligned near the line of sight or a "naked" core. At lambda observations at 7 millimeters, the source is resolved into a core and a bent jet [14] while at kiloparsec scales, it shows a structure extending directly south out by 25" with a weak secondary component located northeast of the core. [15]
The jet of PKS 0420-014 is strongly dominated by a radio core in parsec-scales, indicating the presence of a multicomponent substructure in its core. There are two moving components in the jet's innermost part, with one of them located near the core exhibiting a slower motion and accelerating beyond 0.2 mas as soon its trajectory switches from -100° to -175°. A bright outer component located from the core, is also shown to move ballistically along -72° at a similar speed to the inner component. [16] There are also five other jet components displaying superluminal motion at βapp ~ 2-14c, with all of them following a common curved path within the jet. [8]
It is suggested that the source for the flux density variations in PKS 0420-014 is the presence of a binary supermassive black hole system with masses of about 7 x 107 Mʘ and 2.1 x 108 Mʘ which have a rotation period of 150 years. [17] The gravitational influence of this binary system likely causes the precession of its accretion disk as well as the ejection of plasma from the black hole. As the accretion disk is precessed, the magnetic field lines and relativistic beaming are both perturbed. [8]
The Whole Earth Blazar Telescope (WEBT) is an international consortium of astronomers created in 1997, with the aim to study a particular category of Active Galactic Nuclei (AGN) called blazars, which are characterized by strong and fast brightness variability, on time scales down to hours or less.
3C 345 is a blazar/flat spectrum radio quasar located in the constellation of Hercules. It is noted for hosting a superluminal jet and its variability in almost all wave bands.
4C +71.07 known as S5 0836+71, is a quasar located in the constellation Ursa Major. Based on its high redshift, the object is located 10.7 billion light-years away from Earth and such, classified as a blazar with a flat-spectrum radio source and features a radio jet.
PKS 0537-286, also known as QSO B0537-286, is a quasar located in the constellation Columba. With a redshift of 3.104, the object is located 11.4 billion light years away and belongs to the flat spectrum radio quasar blazar subclass (FSQR). It is one of the most luminous known high-redshift quasars.
PKS 0438-436, also known as PKS J0440-4333, is a quasar located in constellation Caelum. With a high redshift of 2.86, the object is located 11.2 billion light-years from Earth and is classified as a blazar due to its flat-spectrum radio source, (in terms of the flux density as with α < 0.5 and its optical polarization.
PKS 0226-559 known as PMN J0228-5546 is a quasar located in the constellation Horologium. At the redshift of 2.464, the object is roughly 10.6 billion light-years from Earth.
PKS 1402+044 is a quasar located in the constellation of Virgo. It has a redshift of 3.207, estimating the object to be located 11.3 billion light-years away from Earth.
PKS 0805-07 also known as PMN J0808-0751 and 4FGL J0808.2-0751, is a quasar located in the constellation of Monoceros. With a redshift of 1.83, light has taken at least 10 billion light-years to reach Earth.
PKS 0736+017 is a blazar located in the constellation of Canis Minor. This object is also a highly polarized compact radio quasar. Its source having a radio spectrum, appears to be flat, making it a flat spectrum radio quasar. It has a redshift of (z) 0.189 and is hosted in a large elliptical galaxy with a half light radius measurement of re = 13 kiloparsecs. The black hole mass in PKS 0736+017 is 7.32+0.89-0.91 x 107 Mʘ based on a full width at half maximum (FWHM) scaling factor and virial relation.
H1426+428 also known as 1ES 1426+428, is a high-frequency peaked BL Lacertae object (HBL) located in the constellation of Boötes. It is located at a relatively high redshift of (z) 0.129, and was discovered in 1984 by astronomers who presented a catalogue of X-ray sources taken with the HEAO 1 satellite.
AO 0235+164 is a BL Lacertae object located in the constellation of Aries, 7.5 billion light years from Earth. It has a redshift of 0.94. It was first discovered as an astronomical radio source by astronomers between 1967 and 1970, and formally identified with a red stellar object in 1975. Because of its extreme variability at both radio and optical wavelengths across the electromagnetic spectrum, this BL Lac object has been referred to as a blazar.
NRAO 530 or PKS 1730-13 is a flat-spectrum radio quasar located in the southern constellation of Serpens. It has a redshift of 0.902. and was first discovered by two astronomers, W.J. Welch and Hyron Spinrad in 1973. It is classified as a blazar because of its optical variability across the electromagnetic spectrum in radio, gamma ray and X-ray bands. This quasar is also further categorized an OVV quasar.
PKS 0208-512 is a blazar located in the southern constellation of Eridanus. It has a redshift of 1.003 and was first discovered in 1975 by astronomers conducting the Parkes 2700 MHz survey in Australia as a bright astronomical radio source. This object is also classified highly polarized with the radio spectrum appearing to be flat, thus making it a flat-spectrum radio quasar.
DA 193 is a blazar located in the constellation of Auriga. It has a high redshift of 2.365. It was first discovered as an unknown astronomical radio source in 1971 by D.G. MacDonell and A.H. Bridle. This is a low polarized quasar containing a classic homogeneous synchrotron self-absorption spectrum. The radio spectrum of this source shows a turnover frequency at 5 GHz and this object has also been referred to as a gigahertz-peak spectrum source.
PKS 1424-418 is a blazar located in the constellation of Centaurus. It has a redshift of 1.522 and was first discovered in 1971 by astronomer Keith Peter Tritton who identified the object as ultraviolet-excessive. This object is also highly polarized with a compact radio source. The radio spectrum of this source appears flat, making it a flat-spectrum radio quasar.
PKS 0537-441 is a blazar located in the constellation of Pictor. It has a redshift of 0.896 and was discovered in 1973 by an American astronomer named Olin J. Eggen, who noted it as a luminous quasar. This is a BL Lacertae object in literature because of its featureless optical spectra as well as both a possible gravitational microlensing and a gravitationally lensed candidate. Its radio source is found compact and is characterized by a spectral peak in the gigahertz range, making it a gigahertz-peaked spectrum source (GPS).
PKS 2004-447 is a narrow-line Seyfert 1 galaxy located in the constellation of Sagittarius. It has a redshift of (z) 0.24 and is the radio-loudest gamma ray emitting AGN known in the southern hemisphere. It was first identified as an astronomical radio source during a very-long-baseline interferometry survey in 1989. The radio spectrum appears to be powerful and compact, making it a compact steep spectrum source. The X-ray emission for this source is described by a simple power-law in the energy range.
S5 1803+784 is a BL Lacertae object located in the far northern constellation of Draco. It has an estimated redshift of (z) 0.68 and was first discovered as an astronomical radio source in 1981 by a team of astronomers. This object is also classified as a blazar because of its extreme variability on the electromagnetic spectrum and a source of gamma ray activity. According to preliminary analysis in May 2011, the source of S5 1803+784 has a gamma ray flux of electron−6 photon cm−2 s−1.
PKS 0735+178 is a classical BL Lac object in the northern constellation of Gemini. This is one of the brightest objects of its type in the night sky. It has a redshift of z = 0.424, with a luminosity distance of 7,380 million light-years (2,263 Mpc). PKS 0735+178 is a nearly point-like source with an angular size of a milliarcsecond.
PKS 1622-297 is a blazar located in the constellation of Scorpius. It is one of the brightest objects of its type in the gamma ray region. It has a redshift of (z) 0.815. This blazar was first discovered as a compact astronomical radio source in 1970 by astronomers who were conducting interferometer observations and identified with an optical counterpart in 1984. In addition, the radio spectrum of the source appears flat, making it a flat-spectrum radio quasar (FRSQ).