Paecilomyces marquandii

Last updated

Paecilomyces marquandii
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Eurotiomycetes
Order: Eurotiales
Family: Thermoascaceae
Genus: Paecilomyces
Species:
P. marquandii
Binomial name
Paecilomyces marquandii
(Massee) S. Hughes (1951)
Synonyms
  • Verticillium marquandii Massee (1898)
  • Spicaria violaceaE.V. Abbott (1926)
  • Metarhizium marquandii(Massee) Kepler, Rehner & Humber (2014)

Paecilomyces marquandii is a soil-borne filamentous fungus distributed throughout temperate to tropical latitudes worldwide including forest, grassland, sewage sludge and strongly metal polluted area characterized by high tolerance in heavy metals. [1] [2] Simultaneous toxic action of zinc and alachlor result an increase in uptake of metal in this fungus but disrupts the cell membrane. [2] [3] Paecilomyces marquandii is known to parasitize the mushroom, Cuphophyllus virgineus , in the family, Hygrophoraceae. [1] [4] [5] Paecilomyces marquandii is categorised as a biosafety risk group 1 in Canada and is not thought to be a significant pathogen of humans or animals. [6]

Contents

History

The genus Verticillium was erected by British mycologist G.E. Massee in 1898 to accommodate Verticillium marquandii. This species was initially thought conspecific with Spicaria violacea based on its pattern of cell wall division. [7] The fungus was transferred to the genus Paecilomyces as Paecilomyces marquandii by Canadian mycologist Stanley John Hughes in 1951 [4] because of its morphological inconsistency with the emerging, modern concept of Verticillium [8] Paecilomyces marquandii is often confused with Purpureocillium lilacinum because of their similar brownish-violet colony colors and bright yellow reverse pigmentation. [4] In 2014, Metarhizium marquandii was introduced to accommodate this species, but it is considered a synonym. [1] [4] [5] [9]

Growth and morphology

Paecilomyces marquandii is an anamorphic eurotiomycete. It forms brush-like conidiophores borne on thin-walled, hyaline, and smooth-walled stalks that reach lengths from 50 to 300 μm and 2.5 to 3 μm wide. [1] [4] Conidiophores of P. marquandii resemble those of the genus Penicillium where brush-like conidiophores terminate with phialides with swollen bases and tapered necks 8 to 15 μm long and 1.5 to 2 μm wide. [1] [4] Conidia are produced in connected chains consisting of smooth walled hyaline broadly ellipsoidal to spindle-shaped spores, 3 to 3.5 μm long and 2.2 μm wide. [1] [4] [10] Single phialides are not associated with conidiophores but may arise on vegetative aerial hyphae. [1] [4] Globe to ellipsoid chlamydospores 3.5 μm in diameter may be produced submerged in the growth medium beneath the mycelium. [4] No sexual state is known. [11] Colonies are odorless. [1]

Paecilomyces marquandii can grow at wide range of temperature from 5–30 °C (41–86 °F) with optimal growth at 25 °C but no growth above 37 °C. [1] [4] Temperature tolerance is a characteristic that distinguishes Paecilomyces marquandii from Purpureocillium lilacinum with the latter exhibiting growth above 37 °C. [4] Colonies of P. marquandii grown on malt agar reach 5–7 cm in diameter in 14 days at 25 °C with a velvety, brownish-violet aerial mycelium occasionally producing short tufts of conidiophores called synnemata. [12] [13] Colonies begin as white becoming violet then dark vinaceous brown with bright yellow to orange yellow reverse at maturity. [1] [12] Optimal growth of P. marquandii occurs at a water potential of 45 bars. [1] Growth is inhibited at atmospheric concentrations of carbon dioxide less than 3%. [1] [14] Paecilomyces marquandii exhibits antagonism towards Rhizoctonia solani and other fungi. However, it exerts stimulatory effects on some crop plants including corn. [1]

Physiology

Paecilomyces marquandii utilizes starch, gelatin, chitin, and nitrite. [1] Cellulose decomposition is absent or very poor. [1] [15] Paecilomyces marquandii is characterised by high tolerance to metals such as zinc, copper and lead. [1] [2] This fungus is proficient at taking up minerals and heavy metals from soil particularly at high pH conditions, [1] [16] [2] although very high concentrations of metals disrupt the cell membrane. [3] This species is also able to take up and decompose the banned herbicide alachlor and break it down by nitrogen acetyl oxidation. [3] [17] [18] [19] P. marquandii produces highly active, specific keratinases. [20] In presence of keratin chips with phosphate and magnesium ions, it forms large quantities of struvite crystals. [1] Oxygen uptake of P. marquandii is reduced by saturated 8-11 carbon chain fatty acids as a sole carbon source but favoured by compounds with shorter or longer fatty acid chains. [1] Optimum pH for P. marquandii growth is 5-6. [1] It is sensitive to organic chemicals like carbon disulfide. [1]

Habitat and ecology

Paecilomyces marquandii has been isolated from soils in Netherlands, Austria, Czech Republic, Russia, United States, Canada, Spain, Turkey, Israel, Syria, Zaire, central Africa, the Ivory Coast, South Africa, India, Pakistan, Nepal, Jamaica, the Bahamas, Brazil, Central America, New Zealand, and Japan. [1] It has been found in various types of soils including forest soils, under aspen forests, mixed hardwood with high humus accumulation, grasslands particularly in the upper soil layers, soils with steppe-type vegetation, arable and other cultivated soils down to a depth of 40 cm. [1] This species has been found in agricultural fields treated with sewage sludge, in sewage sludge itself, streams with a lower degree of pollution, river sediments, estuarine slit, sand dunes, carst caves, and bat guano. [1] It has been also isolated from pine litter, pine humus, peat, truffle grounds, roots of strawberry, the rhizosphere of corn, wheat, grasses, Beta vulgaris , and sugar cane and the rhizosphere of Lupinus angustifolius. [1] [4] Conidia of P. marquandii have been observed to germinate near roots of peas and radish. [1] [6] This effect is inhibited in the presence of the fungicide, miconazole. [1] [6]

Human and animal disease

This species has been reported as an agent of cellulitis on the leg of an immunosuppressed kidney transplant patient receiving corticosteroid therapy. [4] [21] Successful control of disseminated P. marquandii infection was obtained with miconazole. [6] The fungus has exhibited tolerance to amphotericin B and flucytosine. [6] It is not thought to be a significant pathogen of humans or animals. [6]

Related Research Articles

<span class="mw-page-title-main">Mycorrhiza</span> Fungus-plant symbiotic association

A mycorrhiza is a symbiotic association between a fungus and a plant. The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, its root system. Mycorrhizae play important roles in plant nutrition, soil biology, and soil chemistry.

<i>Acrophialophora fusispora</i> Species of ascomycete fungus found in soil, air and various plants

Acrophialophora fusispora is a poorly studied ascomycete fungus found in soil, air and various plants. A. fusispora is morphologically similar to the genera Paecilomyces and Masonia, but differ in the presence of pigmented conidiophores, verticillate phialides, and frequent sympodial proliferation. Moreover, A. fusispora is distinguished by its pigmented spindle-shaped conidia, covered with spiral bands. The fungus is naturally found in soils of tropical to temperate regions. The fungus has been identified as a plant and animal pathogen, and has recently been recognized as an emerging opportunistic human pathogen. A. fusispora infection in human is rare and has few documented clinical cases, but due to the rarity of the fungus and potential misidentification, the infections may be underdiagnosed. Clinical cases of A. fusispora include cases of keratitis, pulmonary colonization and infection, and cerebral infections. The fungus also has two documented cases of infection in dogs.

<i>Purpureocillium lilacinum</i> Species of fungus

Purpureocillium lilacinum is a species of filamentous fungus in the family Ophiocordycipitaceae. It has been isolated from a wide range of habitats, including cultivated and uncultivated soils, forests, grassland, deserts, estuarine sediments and sewage sludge, and insects. It has also been found in nematode eggs, and occasionally from females of root-knot and cyst nematodes. In addition, it has frequently been detected in the rhizosphere of many crops. The species can grow at a wide range of temperatures – from 8 to 38 °C for a few isolates, with optimal growth in the range 26 to 30 °C. It also has a wide pH tolerance and can grow on a variety of substrates. P. lilacinum has shown promising results for use as a biocontrol agent to control the growth of destructive root-knot nematodes.

Aspergillus ochraceus is a mold species in the genus Aspergillus known to produce the toxin ochratoxin A, one of the most abundant food-contaminating mycotoxins, and citrinin. It also produces the dihydroisocoumarin mellein. It is a filamentous fungus in nature and has characteristic biseriate conidiophores. Traditionally a soil fungus, has now began to adapt to varied ecological niches, like agricultural commodities, farmed animal and marine species. In humans and animals the consumption of this fungus produces chronic neurotoxic, immunosuppressive, genotoxic, carcinogenic and teratogenic effects. Its airborne spores are one of the potential causes of asthma in children and lung diseases in humans. The pig and chicken populations in the farms are the most affected by this fungus and its mycotoxins. Certain fungicides like mancozeb, copper oxychloride, and sulfur have inhibitory effects on the growth of this fungus and its mycotoxin producing capacities.

<i>Rhopalomyces elegans</i> Species of fungus

Rhopalomyces elegans is a common species of zygomycete fungus, and the type species of the genus Rhopalomyces. Widely distributed, it is found in soil, rotting plant material, and animal dung. It is a facultative parasite of nematode eggs.

<span class="mw-page-title-main">Ectomycorrhiza</span> Non-penetrative symbiotic association between a fungus and the roots of a vascular plant

An ectomycorrhiza is a form of symbiotic relationship that occurs between a fungal symbiont, or mycobiont, and the roots of various plant species. The mycobiont is often from the phyla Basidiomycota and Ascomycota, and more rarely from the Zygomycota. Ectomycorrhizas form on the roots of around 2% of plant species, usually woody plants, including species from the birch, dipterocarp, myrtle, beech, willow, pine and rose families. Research on ectomycorrhizas is increasingly important in areas such as ecosystem management and restoration, forestry and agriculture.

<i>Aspergillus versicolor</i> Species of fungus

Aspergillus versicolor is a slow-growing species of filamentous fungus commonly found in damp indoor environments and on food products. It has a characteristic musty odor associated with moldy homes and is a major producer of the hepatotoxic and carcinogenic mycotoxin sterigmatocystin. Like other Aspergillus species, A. versicolor is an eye, nose, and throat irritant.

<i>Geomyces pannorum</i> Species of fungus

Geomyces pannorum is a yellow-brown filamentous fungus of the phylum Ascomycota commonly found in cold soil environments including the permafrost of the Northern hemisphere. A ubiquitous soil fungus, it is the most common species of the genus Geomyces; which also includes G. vinaceus and G. asperulatus. Geomyces pannorum has been identified as an agent of disfigurement of pigments used in the 15,000-year-old paintings on the walls of the Lascaux caves of France. Strains of Geomyces have been recovered from the Alaskan Fox Permafrost Tunnel and radiocarbon dated to between 14,000 and 30,000 years old.

<i>Cunninghamella echinulata</i> Species of fungus

Cunninghamella echinulata is a fungal species in the genus Cunninghamella. It is an asexually reproducing fungus and a mesophile, preferring intermediate temperature ranges. C. echinulata is a common air contaminant, and is currently of interest to the biotechnology industry due to its ability to synthesize γ-linolenic acid as well as its capacity to bioconcentrate metals. This species is a soil saprotroph that forms rhizoids, preferring soils enriched in nitrogen, phosphorus and potassium. It has been reported occasionally an agent of mucormycosis following the inhalation of fungal spores. Czapek's agar is a suitable growth medium for the propagation of C. echinulata.

<i>Aspergillus clavatus</i> Species of fungus

Aspergillus clavatus is a species of fungus in the genus Aspergillus with conidia dimensions 3–4.5 x 2.5–4.5 μm. It is found in soil and animal manure. The fungus was first described scientifically in 1834 by the French mycologist John Baptiste Henri Joseph Desmazières.

<i>Cladosporium sphaerospermum</i> Species of fungus

Cladosporium sphaerospermum is a radiotrophic fungus belonging to the genus Cladosporium and was described in 1886 by Albert Julius Otto Penzig from the decaying leaves and branches of Citrus. It is a dematiaceous (darkly-pigmented) fungus characterized by slow growth and largely asexual reproduction. Cladosporium sphaerospermum consists of a complex of poorly morphologically differentiated, "cryptic" species that share many physiological and ecological attributes. In older literature, all of these sibling species were classified as C. sphaerospermum despite their unique nature. Accordingly, there is confusion in older literature reports on the physiological and habitat regularities of C. sphaerospermum in the strict sense. This fungus is most phylogenetically similar to C. fusiforme. According to modern phylogenetic analyses, the previously synonymized species, Cladosporium langeroni, is a distinct species.

Mycorrhizal amelioration of heavy metals or pollutants is a process by which mycorrhizal fungi in a mutualistic relationship with plants can sequester toxic compounds from the environment, as a form of bioremediation.

<i>Penicillium spinulosum</i> Species of fungus

Penicillium spinulosum is a non-branched, fast-growing fungus with a swelling at the terminal of the stipe (vesiculate) in the genus Penicillium. P. spinulosum is able to grow and reproduce in environment with low temperature and low water availability, and is known to be acidotolerant. P. spinulosum is ubiquitously distributed, and can often be isolated from soil. Each individual strain of P. spinulosum differs from others in their colony morphology, including colony texture, amount of sporulation and roughness of conidia and conidiophores.

Aspergillus wentii is an asexual, filamentous, endosymbiotic fungus belonging to the mold genus, Aspergillus. It is a common soil fungus with a cosmopolitan distribution, although it is primarily found in subtropical regions. Found on a variety of organic materials, A. wentii is known to colonize corn, cereals, moist grains, peanuts and other ground nut crops. It is also used in the manufacture of biodiesel from lipids and is known for its ability to produce enzymes used in the food industry.

<i>Mariannaea elegans</i> Species of fungus

Mariannaea elegans an anamorphic fungus. It is mainly found on rotting wood and soil. M. elegans is not pathogenic to humans, animals, or plants.

Botryotrichum piluliferum is a fungal species first identified in 1885 by Saccardo and Marchal. It was discovered to be the asexual state of a member of the ascomycete genus, Chaetomium. The name B. piluliferum now applies to the fungus in all its states. B. piluliferum has been found worldwide in a wide range of habitats such as animal dung and vegetation. The colonies of this fungus start off white and grow rapidly to a brown colour. The conidia are smooth and white. B. piluliferum grows optimally at a temperature of 25-30 °C and a pH of 5.5.

Microascus manginii is a filamentous fungal species in the genus Microascus. It produces both sexual (teleomorph) and asexual (anamorph) reproductive stages known as M. manginii and Scopulariopsis candida, respectively. Several synonyms appear in the literature because of taxonomic revisions and re-isolation of the species by different researchers. M. manginii is saprotrophic and commonly inhabits soil, indoor environments and decaying plant material. It is distinguishable from closely related species by its light colored and heart-shaped ascospores used for sexual reproduction. Scopulariopsis candida has been identified as the cause of some invasive infections, often in immunocompromised hosts, but is not considered a common human pathogen. There is concern about amphotericin B resistance in S. candida.

Aspergillus giganteus is a species of fungus in the genus Aspergillus that grows as a mold. It was first described in 1901 by Wehmer, and is one of six Aspergillus species from the Clavati section of the subgenus Fumigati. Its closest taxonomic relatives are Aspergillus rhizopodus and Aspergillus longivescia.

Myriodontium keratinophilum is a fungus widespread in nature, most abundantly found in keratin-rich environments such as feathers, nails and hair. Despite its ability to colonize keratinous surfaces of human body, the species has been known to be non-pathogenic in man and is phylogentically distant to other human pathogenic species, such as anthropophilic dermatophytes. However, its occasional isolation from clinical specimens along with its keratinolytic properties suggest the possibility it may contribute to disease.

Oidiodendron cereale is a species of ascomycetes fungi in the order Helotiales. This fungus is found globally in temperate climates where average summer temperatures are below 25 °C, but there have been scattered reports from tropical and subtropical environments. It is predominantly found in soil, but little is known regarding their ecological roles in nature. However, an enzymatic study from Agriculture Canada showed that O. cereale can break down a variety of plant, fungal, and animal based substrates found in soil, which may have beneficial effects for plants. On rare occasions, this fungus is found on human skin and hair. There has been one reported case of O. cereale infection in 1969, causing Neurodermitis Nuchae.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Domsch, K.H.; Gams, Walter; Andersen, Traute-Heidi (1980). Compendium of soil fungi (2nd ed.). London, UK: Academic Press. ISBN   9780122204029.
  2. 1 2 3 4 Słaba, M; Bernat, P; Różalska, S; Nykiel, J; Długoński, J (2013). "Comparative study of metal induced phospholipid modifications in the heavy metal tolerant filamentous fungus Paecilomyces marquandii and implications for the fungal membrane integrity". Acta Biochimica Polonica. 60 (4): 695–700. PMID   24432319.
  3. 1 2 3 Słaba, Mirosława; Szewczyk, Rafał; Bernat, Przemysław; Długoński, Jerzy (June 2009). "Simultaneous toxic action of zinc and alachlor resulted in enhancement of zinc uptake by the filamentous fungus Paecilomyces marquandii". Science of the Total Environment. 407 (13): 4127–4133. doi:10.1016/j.scitotenv.2009.03.023. PMID   19394071.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 Kane, Julius; Summerbell, Richard; Sigler, Lynne; Krajden, Sigmund; Land, Geoffrey (1997). Laboratory handbook of dermatophytes: a clinical guide and laboratory handbook of dermatophytes and other filamentous fungi from skin, hair, and nails. Belmont, CA: Star Pub. ISBN   978-0898631579.
  5. 1 2 Boertmann, David (2010). The genus Hygrocybe (2nd rev. ed.). [Denmark]: Danish Mycological Society. ISBN   9788798358176.
  6. 1 2 3 4 5 6 Aguilar, C.; Pujol, I.; Sala, J.; Guarro, J. (1998). "Antifungal Susceptibilities of Paecilomyces Species". Antimicrobial Agents and Chemotherapy. 42 (7): 1601–1604. doi:10.1128/AAC.42.7.1601. ISSN   0066-4804. PMC   105653 . PMID   9660991.
  7. Duddington, C.L. (January 1951). "Further records of British predacious fungi. II". Transactions of the British Mycological Society. 34 (2): 194–209. doi:10.1016/s0007-1536(51)80008-1.
  8. Smith, Harvey C. (5 January 2012). "The morphology of Verticillium albo-atrum, V. dahliae, and V. tricorpus". New Zealand Journal of Agricultural Research. 8 (3): 450–478. doi: 10.1080/00288233.1965.10419889 .
  9. MycoBank. "Paecilomyces marquandii". MycoBank. Westerdijk Institut. Retrieved 7 January 2018.
  10. Sutton, B. C.; Sandhu, D. K. (May 1969). "Electron microscopy of conidium development and secession in Cryptosporiopsis sp., Phoma fumosa, Melanconium bicolor, and M. apiocarpum". Canadian Journal of Botany. 47 (5): 745–749. doi:10.1139/b69-107.
  11. Bujold, I.; Paulitz, T. C.; Carisse, O. (September 2001). "Effect of Microsphaeropsis sp. on the Production of Perithecia and Ascospores of Gibberella zeae". Plant Disease. 85 (9): 977–984. doi: 10.1094/PDIS.2001.85.9.977 . PMID   30823113.
  12. 1 2 Barron, George L. (1983). The genera of Hyphomycetes from soil (Reprint. ed.). Malabar, Fla.: Krieger. ISBN   9780882750040.
  13. Cortez, K. J.; Roilides, E.; Quiroz-Telles, F.; Meletiadis, J.; Antachopoulos, C.; Knudsen, T.; Buchanan, W.; Milanovich, J.; Sutton, D. A.; Fothergill, A.; Rinaldi, M. G.; Shea, Y. R.; Zaoutis, T.; Kottilil, S.; Walsh, T. J. (17 January 2008). "Infections Caused by Scedosporium spp". Clinical Microbiology Reviews. 21 (1): 157–197. doi:10.1128/CMR.00039-07. PMC   2223844 . PMID   18202441.
  14. Rezacova, Veronika; Blum, Herbert; Hrselova, Hana; Gamper, Hannes; Gryndler, Milan (February 2005). "Saprobic microfungi under Lolium perenne and Trifolium repens at different fertilization intensities and elevated atmospheric CO2 concentration". Global Change Biology. 11 (2): 224–230. doi:10.1111/j.1365-2486.2005.00908.x.
  15. Widden, Paul (July 1986). "Functional relationships between Quebec forest soil microfungi and their environment". Canadian Journal of Botany. 64 (7): 1424–1432. doi:10.1139/b86-194.
  16. Słaba, Mirosława; Długoński, Jerzy (October 2011). "Efficient Zn2+ and Pb2+ uptake by filamentous fungus Paecilomyces marquandii with engagement of metal hydrocarbonates precipitation". International Biodeterioration & Biodegradation. 65 (7): 954–960. doi:10.1016/j.ibiod.2011.07.004.
  17. Eykholt, Gerald R.; Davenport, Douglas T. (May 1998). "Dechlorination of the Chloroacetanilide Herbicides Alachlor and Metolachlor by Iron Metal". Environmental Science & Technology. 32 (10): 1482–1487. doi:10.1021/es970678n.
  18. Szewczyk, Rafał; Soboń, Adrian; Słaba, Mirosława; Długoński, Jerzy (June 2015). "Mechanism study of alachlor biodegradation by Paecilomyces marquandii with proteomic and metabolomic methods". Journal of Hazardous Materials. 291: 52–64. doi:10.1016/j.jhazmat.2015.02.063. hdl: 11089/9735 . PMID   25765177.
  19. Słaba, Mirosława; Różalska, Sylwia; Bernat, Przemysław; Szewczyk, Rafał; Piątek, Milena A.; Długoński, Jerzy (December 2015). "Efficient alachlor degradation by the filamentous fungus Paecilomyces marquandii with simultaneous oxidative stress reduction". Bioresource Technology. 197: 404–409. doi:10.1016/j.biortech.2015.08.045. PMID   26356111.
  20. Gradisar, H.; Friedrich, J.; Krizaj, I.; Jerala, R. (6 July 2005). "Similarities and Specificities of Fungal Keratinolytic Proteases: Comparison of Keratinases of Paecilomyces marquandii and Doratomyces microsporus to Some Known Proteases". Applied and Environmental Microbiology. 71 (7): 3420–3426. doi: 10.1128/aem.71.7.3420-3426.2005 . PMC   1168971 . PMID   16000744.
  21. Harris, L.F. (1979). Paecilomyces cellulitis in a renal transplant patient: successful treatment with intravenous miconazole. Southern Medical journal.