Separation axioms in topological spaces | |
---|---|
Kolmogorov classification | |
T0 | (Kolmogorov) |
T1 | (Fréchet) |
T2 | (Hausdorff) |
T2½ | (Urysohn) |
completely T2 | (completely Hausdorff) |
T3 | (regular Hausdorff) |
T3½ | (Tychonoff) |
T4 | (normal Hausdorff) |
T5 | (completely normal Hausdorff) |
T6 | (perfectly normal Hausdorff) |
In mathematics, in the realm of topology, a paranormal space( Nyikos 1984 ) is a topological space in which every countable discrete collection of closed sets has a locally finite open expansion.
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that are used to distinguish topological spaces.
In topology and related branches of mathematics, a Hausdorff space ( HOWS-dorf, HOWZ-dorf), separated space or T2 space is a topological space where for any two distinct points there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters.
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.
This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.
In topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces.
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.
In topology and related fields of mathematics, a topological space X is called a regular space if every closed subset C of X and a point p not contained in C admit non-overlapping open neighborhoods. Thus p and C can be separated by neighborhoods. This condition is known as Axiom T3. The term "T3 space" usually means "a regular Hausdorff space". These conditions are examples of separation axioms.
In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology.
In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of compactness, which requires the existence of a finite subcover.
In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians—Sierpiński, Kuratowski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory.
In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.
In the mathematical field of general topology, a topological space is said to be metacompact if every open cover has a point-finite open refinement. That is, given any open cover of the topological space, there is a refinement that is again an open cover with the property that every point is contained only in finitely many sets of the refining cover.
In mathematics, in the field of topology, a topological space is said to be pseudonormal if given two disjoint closed sets in it, one of which is countable, there are disjoint open sets containing them. Note the following:
In topology and other branches of mathematics, a topological space X is locally connected if every point admits a neighbourhood basis consisting entirely of open, connected sets.
In mathematics, more specifically point-set topology, a Moore space is a developable regular Hausdorff space. That is, a topological space X is a Moore space if the following conditions hold:
In mathematics, a topological space is called collectionwise normal if for every discrete family Fi of closed subsets of there exists a pairwise disjoint family of open sets Ui, such that Fi ⊆ Ui. A family of subsets of is called discrete when every point of has a neighbourhood that intersects at most one of the sets from . An equivalent definition of collectionwise normal demands that the above Ui are themselves a discrete family, which is stronger than pairwise disjoint.
In mathematics, specifically in the field of topology, a monotonically normal space is a particular kind of normal space, defined in terms of a monotone normality operator. It satisfies some interesting properties; for example metric spaces and linearly ordered spaces are monotonically normal, and every monotonically normal space is hereditarily normal.
In the mathematical field of topology, local finiteness is a property of collections of subsets of a topological space. It is fundamental in the study of paracompactness and topological dimension.
In mathematics, particularly topology, a topological space X is locally normal if intuitively it looks locally like a normal space. More precisely, a locally normal space satisfies the property that each point of the space belongs to a neighbourhood of the space that is normal under the subspace topology.
In topology and related fields of mathematics, there are several restrictions that one often makes on the kinds of topological spaces that one wishes to consider. Some of these restrictions are given by the separation axioms. These are sometimes called Tychonoff separation axioms, after Andrey Tychonoff.