Peak phosphorus

Last updated
Annual global phosphate rock production (megatonnes per yr), 1994-2022 (data from US Geological Survey) Global phosphate rock production USGS 1994-2022.png
Annual global phosphate rock production (megatonnes per yr), 1994–2022 (data from US Geological Survey)

Peak phosphorus is a concept to describe the point in time when humanity reaches the maximum global production rate of phosphorus as an industrial and commercial raw material. The term is used in an equivalent way to the better-known term peak oil. [2] The issue was raised as a debate on whether phosphorus shortages might be imminent around 2010, which was largely dismissed after USGS and other organizations [3] increased world estimates on available phosphorus resources, mostly in the form of additional resources in Morocco. However, exact reserve quantities remain uncertain, as do the possible impacts of increased phosphate use on future generations. [4] This is important because rock phosphate is a key ingredient in many inorganic fertilizers. Hence, a shortage in rock phosphate (or just significant price increases) might negatively affect the world's food security. [5]

Contents

Phosphorus is a finite (limited) resource that is widespread in the Earth's crust and in living organisms but is relatively scarce in concentrated forms, which are not evenly distributed across the Earth. The only cost-effective production method to date is the mining of phosphate rock, but only a few countries have significant commercial reserves. The top five are Morocco (including reserves located in Western Sahara), China, Egypt, Algeria and Syria. [6] Estimates for future production vary significantly depending on modelling and assumptions on extractable volumes, but it is inescapable that future production of phosphate rock will be heavily influenced by Morocco in the foreseeable future. [7]

Means of commercial phosphorus production besides mining are few because the phosphorus cycle does not include significant gas-phase transport. [8] The predominant source of phosphorus in modern times is phosphate rock (as opposed to the guano that preceded it). According to some researchers, Earth's commercial and affordable phosphorus reserves are expected to be depleted in 50–100 years and peak phosphorus to be reached in approximately 2030. [2] [9] Others suggest that supplies will last for several hundreds of years. [10] As with the timing of peak oil, the question is not settled, and researchers in different fields regularly publish different estimates of the rock phosphate reserves. [11]

Background

Phosphate rock mined in the United States, 1900-2015 (data from US Geological Survey) US Mined Phosphate Rock 1900-2015.png
Phosphate rock mined in the United States, 1900-2015 (data from US Geological Survey)

The peak phosphorus concept is connected with the concept of planetary boundaries. Phosphorus, as part of biogeochemical processes, belongs to one of the nine "Earth system processes" which are known to have boundaries. As long as the boundaries are not crossed, they mark the "safe zone" for the planet. [12]

Estimates of world phosphate reserves

Global distribution of commercial reserves of rock phosphate in 2016 Global distribution of commercial reserves of rock phosphate USGS 2016; GTK 2015.jpg
Global distribution of commercial reserves of rock phosphate in 2016

The accurate determination of peak phosphorus is dependent on knowing the total world's commercial phosphate reserves and resources, especially in the form of phosphate rock (a summarizing term for over 300 ores of different origin, composition, and phosphate content). "Reserves" refers to the amount assumed recoverable at current market prices and "resources" refers to estimated amounts of such a grade or quality that they have reasonable prospects for economic extraction. [14] [15]

Unprocessed phosphate rock has a concentration of 1.7-8.7% phosphorus by mass (4-20% phosphorus pentoxide). By comparison, the Earth's crust contains 0.1% phosphorus by mass, [16] and vegetation 0.03% to 0.2%. [17] Although quadrillions of tons of phosphorus exist in the Earth's crust, [18] these are currently not economically extractable.

In 2023, the United States Geological Survey (USGS) estimated that economically extractable phosphate rock reserves worldwide are 72 billion tons, while world mining production in 2022 was 220 million tons. [6] Assuming zero growth, the reserves would thus last for around 300 years. This broadly confirms a 2010 International Fertilizer Development Center (IFDC) report that global reserves would last for several hundred years. [10] [3] Phosphorus reserve figures are intensely debated. [14] [19] [20] Gilbert suggest that there has been little external verification of the estimate. [21] A 2014 review [11] concluded that the IFDC report "presents an inflated picture of global reserves, in particular those of Morocco, where largely hypothetical and inferred resources have simply been relabeled “reserves".

The countries with most phosphate rock commercial reserves (in billion metric tons): Morocco 50, China 3.2, Egypt 2.8, Algeria 2.2, Syria 1.8, Brazil 1.6, Saudi Arabia 1.4, South Africa 1.4, Australia 1.1, United States 1.0, Finland 1.0, Russia 0.6, Jordan 0.8. [22] [6]

Rock phosphate shortages (or just significant price increases) might negatively affect the world's food security. [5] Many agricultural systems depend on supplies of inorganic fertilizer, which use rock phosphate. Under the food production regime in developed countries, shortages of rock phosphate could lead to shortages of inorganic fertilizer, which could in turn reduce the global food production. [23]

Economists have pointed out that price fluctuations of rock phosphate do not necessarily indicate peak phosphorus, as these have already occurred due to various demand- and supply-side factors. [24]

United States

US production of phosphate rock peaked in 1980 at 54.4 million metric tons. The United States was the world's largest producer of phosphate rock from at least 1900, up until 2006, when US production was exceeded by that of China. In 2019, the US produced 10 percent of the world's phosphate rock. [25]

Exhaustion of guano reserves

In 1609 Garcilaso de la Vega wrote the book Comentarios Reales in which he described many of the agricultural practices of the Incas prior to the arrival of the Spaniards and introduced the use of guano as a fertilizer. As Garcilaso described, the Incas near the coast harvested guano. [26] In the early 1800s Alexander von Humboldt introduced guano as a source of agricultural fertilizer to Europe after having discovered it on islands off the coast of South America. It has been reported that, at the time of its discovery, the guano on some islands was over 30 meters deep. [27] The guano had previously been used by the Moche people as a source of fertilizer by mining it and transporting it back to Peru by boat. International commerce in guano did not start until after 1840. [27] By the start of the 20th century guano had been nearly completely depleted and was eventually overtaken with the discovery of methods of production of superphosphate.

Phosphorus conservation and recycling

Phosphate mine on Nauru, once one of the world's major sources of phosphate rock. Nauru-phosphatefields.jpg
Phosphate mine on Nauru, once one of the world's major sources of phosphate rock.

Overview

Phosphorus can be transferred from the soil in one location to another as food is transported across the world, taking the phosphorus it contains with it. Once consumed by humans, it can end up in the local environment (in the case of open defecation which is still widespread on a global scale) or in rivers or the ocean via sewage systems and sewage treatment plants in the case of cities connected to sewer systems. An example of one crop that takes up large amounts of phosphorus is soy.

In an effort to postpone the onset of peak phosphorus several methods of reducing and reusing phosphorus are in practice, such as in agriculture and in sanitation systems. The Soil Association, the UK organic agriculture certification and pressure group, issued a report in 2010 "A Rock and a Hard Place" encouraging more recycling of phosphorus. [28] One potential solution to the shortage of phosphorus is greater recycling of human and animal wastes back into the environment. [29]

Agricultural practices

Reducing agricultural runoff and soil erosion can slow the frequency with which farmers have to reapply phosphorus to their fields. Agricultural methods such as no-till farming, terracing, contour tilling, and the use of windbreaks have been shown to reduce the rate of phosphorus depletion from farmland. These methods are still dependent on a periodic application of phosphate rock to the soil and as such methods to recycle the lost phosphorus have also been proposed. Perennial vegetation, such as grassland or forest, is much more efficient in its use of phosphate than arable land. Strips of grassland and/or forest between arable land and rivers can greatly reduce losses of phosphate and other nutrients. [30]

Integrated farming systems which use animal sources to supply phosphorus for crops do exist at smaller scales, and application of the system to a larger scale is a potential alternative for supplying the nutrient, although it would require significant changes to the widely adopted modern crop fertilizing methods.

Excreta reuse

The oldest method of recycling phosphorus is through the reuse of animal manure and human excreta in agriculture. Via this method, phosphorus in the foods consumed are excreted, and the animal or human excreta are subsequently collected and re-applied to the fields. Although this method has maintained civilizations for centuries the current system of manure management is not logistically geared towards application to crop fields on a large scale. At present, manure application could not meet the phosphorus needs of large scale agriculture. Despite that, it is still an efficient method of recycling used phosphorus and returning it to the soil.

Sewage sludge

Sewage treatment plants that have an enhanced biological phosphorus removal step produce a sewage sludge that is rich in phosphorus. Various processes have been developed to extract phosphorus from sewage sludge directly, from the ash after incineration of the sewage sludge or from other products of sewage sludge treatment. This includes the extraction of phosphorus rich materials such as struvite from waste processing plants. [21] The struvite can be made by adding magnesium to the waste. Some companies such as Ostara in Canada and NuReSys in Belgium are already using this technique to recover phosphate. Ostara has eight operating plants worldwide.[ citation needed ]

Research on phosphorus recovery methods from sewage sludge has been carried out in Sweden and Germany since around 2003, but the technologies currently under development are not yet cost effective, given the current price of phosphorus on the world market. [31] [32]

See also

Related Research Articles

<span class="mw-page-title-main">Compost</span> Mixture used to improve soil fertility

Compost is a mixture of ingredients used as plant fertilizer and to improve soil's physical, chemical, and biological properties. It is commonly prepared by decomposing plant and food waste, recycling organic materials, and manure. The resulting mixture is rich in plant nutrients and beneficial organisms, such as bacteria, protozoa, nematodes, and fungi. Compost improves soil fertility in gardens, landscaping, horticulture, urban agriculture, and organic farming, reducing dependency on commercial chemical fertilizers. The benefits of compost include providing nutrients to crops as fertilizer, acting as a soil conditioner, increasing the humus or humic acid contents of the soil, and introducing beneficial microbes that help to suppress pathogens in the soil and reduce soil-borne diseases.

<span class="mw-page-title-main">Phosphate</span> Chemical compound

In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosphoric acid, a.k.a. phosphoric acid H3PO4.

<span class="mw-page-title-main">Fertilizer</span> Substance added to soils to supply plant nutrients for a better growth

A fertilizer or fertiliser is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from liming materials or other non-nutrient soil amendments. Many sources of fertilizer exist, both natural and industrially produced. For most modern agricultural practices, fertilization focuses on three main macro nutrients: nitrogen (N), phosphorus (P), and potassium (K) with occasional addition of supplements like rock flour for micronutrients. Farmers apply these fertilizers in a variety of ways: through dry or pelletized or liquid application processes, using large agricultural equipment or hand-tool methods.

<span class="mw-page-title-main">Eutrophication</span> Excessive plant growth in water

Eutrophication is the "explosive growth of microorganisms, to the extent that dissolved oxygen is depleted". Other definitions emphasize the role of excessive nutrient supply: "excessive plant growth resulting from nutrient enrichment". It has also been defined as "nutrient-induced increase in phytoplankton productivity".

<span class="mw-page-title-main">Sewage sludge</span> Semi-solid material that is produced as a by-product during sewage treatment

Sewage sludge is the residual, semi-solid material that is produced as a by-product during sewage treatment of industrial or municipal wastewater. The term "septage" also refers to sludge from simple wastewater treatment but is connected to simple on-site sanitation systems, such as septic tanks.

<span class="mw-page-title-main">Sustainable agriculture</span> Farming approach that balances environmental, economic and social factors in the long term

Sustainable agriculture is farming in sustainable ways meeting society's present food and textile needs, without compromising the ability for current or future generations to meet their needs. It can be based on an understanding of ecosystem services. There are many methods to increase the sustainability of agriculture. When developing agriculture within sustainable food systems, it is important to develop flexible business process and farming practices. Agriculture has an enormous environmental footprint, playing a significant role in causing climate change, water scarcity, water pollution, land degradation, deforestation and other processes; it is simultaneously causing environmental changes and being impacted by these changes. Sustainable agriculture consists of environment friendly methods of farming that allow the production of crops or livestock without damage to human or natural systems. It involves preventing adverse effects to soil, water, biodiversity, surrounding or downstream resources—as well as to those working or living on the farm or in neighboring areas. Elements of sustainable agriculture can include permaculture, agroforestry, mixed farming, multiple cropping, and crop rotation.

<span class="mw-page-title-main">Hubbert peak theory</span> One of the primary theories on peak oil

The Hubbert peak theory says that for any given geographical area, from an individual oil-producing region to the planet as a whole, the rate of petroleum production tends to follow a bell-shaped curve. It is one of the primary theories on peak oil.

<span class="mw-page-title-main">Phosphorite</span> Sedimentary rock containing large amounts of phosphate minerals

Phosphorite, phosphate rock or rock phosphate is a non-detrital sedimentary rock that contains high amounts of phosphate minerals. The phosphate content of phosphorite (or grade of phosphate rock) varies greatly, from 4% to 20% phosphorus pentoxide (P2O5). Marketed phosphate rock is enriched ("beneficiated") to at least 28%, often more than 30% P2O5. This occurs through washing, screening, de-liming, magnetic separation or flotation. By comparison, the average phosphorus content of sedimentary rocks is less than 0.2%. The phosphate is present as fluorapatite Ca5(PO4)3F typically in cryptocrystalline masses (grain sizes < 1 μm) referred to as collophane-sedimentary apatite deposits of uncertain origin. It is also present as hydroxyapatite Ca5(PO4)3OH or Ca10(PO4)6(OH)2, which is often dissolved from vertebrate bones and teeth, whereas fluorapatite can originate from hydrothermal veins. Other sources also include chemically dissolved phosphate minerals from igneous and metamorphic rocks. Phosphorite deposits often occur in extensive layers, which cumulatively cover tens of thousands of square kilometres of the Earth's crust.

<span class="mw-page-title-main">Soil fertility</span> The ability of a soil to sustain agricultural plant growth

Soil fertility refers to the ability of soil to sustain agricultural plant growth, i.e. to provide plant habitat and result in sustained and consistent yields of high quality. It also refers to the soil's ability to supply plant/crop nutrients in the right quantities and qualities over a sustained period of time. A fertile soil has the following properties:

<span class="mw-page-title-main">Organic fertilizer</span> Fertilizer developed from natural processes

Organic fertilizers are fertilizers that are naturally produced. Fertilizers are materials that can be added to soil or plants, in order to provide nutrients and sustain growth. Typical organic fertilizers include all animal waste including meat processing waste, manure, slurry, and guano; plus plant based fertilizers such as compost; and biosolids. Inorganic "organic fertilizers" include minerals and ash. The organic-mess refers to the Principles of Organic Agriculture, which determines whether a fertilizer can be used for commercial organic agriculture, not whether the fertilizer consists of organic compounds.

<span class="mw-page-title-main">Ecological sanitation</span> Approach to sanitation provision which aims to safely reuse excreta in agriculture

Ecological sanitation, commonly abbreviated as ecosan, is an approach to sanitation provision which aims to safely reuse excreta in agriculture. It is an approach, rather than a technology or a device which is characterized by a desire to "close the loop", mainly for the nutrients and organic matter between sanitation and agriculture in a safe manner. One of the aims is to minimise the use of non-renewable resources. When properly designed and operated, ecosan systems provide a hygienically safe system to convert human excreta into nutrients to be returned to the soil, and water to be returned to the land. Ecosan is also called resource-oriented sanitation.

Agrogeology is the study of the origins of minerals known as agrominerals and their applications. These minerals are of importance to farming and horticulture, especially with regard to soil fertility and fertilizer components. These minerals are usually essential plant nutrients. Agrogeology can also be defined as the application of geology to problems in agriculture, particularly in reference to soil productivity and health. This field is a combination of a few different fields, including geology, soil science, agronomy, and chemistry. The overall objective is to advance agricultural production by using geological resources to improve chemical and physical aspects of soil.

<span class="mw-page-title-main">Sewage sludge treatment</span> Processes to manage and dispose of sludge during sewage treatment

Sewage sludge treatment describes the processes used to manage and dispose of sewage sludge produced during sewage treatment. Sludge treatment is focused on reducing sludge weight and volume to reduce transportation and disposal costs, and on reducing potential health risks of disposal options. Water removal is the primary means of weight and volume reduction, while pathogen destruction is frequently accomplished through heating during thermophilic digestion, composting, or incineration. The choice of a sludge treatment method depends on the volume of sludge generated, and comparison of treatment costs required for available disposal options. Air-drying and composting may be attractive to rural communities, while limited land availability may make aerobic digestion and mechanical dewatering preferable for cities, and economies of scale may encourage energy recovery alternatives in metropolitan areas.

<span class="mw-page-title-main">Green waste</span> Biodegradable waste

Green waste, also known as "biological waste", is any organic waste that can be composted. It is most usually composed of refuse from gardens such as grass clippings or leaves, and domestic or industrial kitchen wastes. Green waste does not include things such as dried leaves, pine straw, or hay. Such materials are rich in carbon and considered "brown wastes," while green wastes contain high concentrations of nitrogen. Green waste can be used to increase the efficiency of many composting operations and can be added to soil to sustain local nutrient cycling.

<span class="mw-page-title-main">Phosphorus cycle</span> Biogeochemical movement

The phosphorus cycle is the biogeochemical cycle that describes the movement of phosphorus through the lithosphere, hydrosphere, and biosphere. Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based compounds are usually solids at the typical ranges of temperature and pressure found on Earth. The production of phosphine gas occurs in only specialized, local conditions. Therefore, the phosphorus cycle should be viewed from whole Earth system and then specifically focused on the cycle in terrestrial and aquatic systems.

<span class="mw-page-title-main">Agricultural pollution</span> Type of pollution caused by agriculture

Agricultural pollution refers to biotic and abiotic byproducts of farming practices that result in contamination or degradation of the environment and surrounding ecosystems, and/or cause injury to humans and their economic interests. The pollution may come from a variety of sources, ranging from point source water pollution to more diffuse, landscape-level causes, also known as non-point source pollution and air pollution. Once in the environment these pollutants can have both direct effects in surrounding ecosystems, i.e. killing local wildlife or contaminating drinking water, and downstream effects such as dead zones caused by agricultural runoff is concentrated in large water bodies.

<span class="mw-page-title-main">Nutrient pollution</span> Contamination of water by excessive inputs of nutrients

Nutrient pollution, a form of water pollution, refers to contamination by excessive inputs of nutrients. It is a primary cause of eutrophication of surface waters, in which excess nutrients, usually nitrogen or phosphorus, stimulate algal growth. Sources of nutrient pollution include surface runoff from farm fields and pastures, discharges from septic tanks and feedlots, and emissions from combustion. Raw sewage is a large contributor to cultural eutrophication since sewage is high in nutrients. Releasing raw sewage into a large water body is referred to as sewage dumping, and still occurs all over the world. Excess reactive nitrogen compounds in the environment are associated with many large-scale environmental concerns. These include eutrophication of surface waters, harmful algal blooms, hypoxia, acid rain, nitrogen saturation in forests, and climate change.

Resource recovery is using wastes as an input material to create valuable products as new outputs. The aim is to reduce the amount of waste generated, thereby reducing the need for landfill space, and optimising the values created from waste. Resource recovery delays the need to use raw materials in the manufacturing process. Materials found in municipal solid waste, construction and demolition waste, commercial waste and industrial wastes can be used to recover resources for the manufacturing of new materials and products. Plastic, paper, aluminium, glass and metal are examples of where value can be found in waste.

The International Fertilizer Development Center is a science-based public international organization working to alleviate global hunger by introducing improved agricultural practices and fertilizer technologies to farmers and by linking farmers to markets. Headquartered in Muscle Shoals, Alabama, USA, the organization has projects in over 25 countries.

<span class="mw-page-title-main">Reuse of human excreta</span> Safe, beneficial use of human excreta mainly in agriculture (after treatment)

Reuse of human excreta is the safe, beneficial use of treated human excreta after applying suitable treatment steps and risk management approaches that are customized for the intended reuse application. Beneficial uses of the treated excreta may focus on using the plant-available nutrients that are contained in the treated excreta. They may also make use of the organic matter and energy contained in the excreta. To a lesser extent, reuse of the excreta's water content might also take place, although this is better known as water reclamation from municipal wastewater. The intended reuse applications for the nutrient content may include: soil conditioner or fertilizer in agriculture or horticultural activities. Other reuse applications, which focus more on the organic matter content of the excreta, include use as a fuel source or as an energy source in the form of biogas.

References

  1. "Phosphate Rock Statistics and Information | U.S. Geological Survey". www.usgs.gov. Retrieved 2023-04-09.
  2. 1 2 Cordell, Dana; Drangert, Jan-Olof; White, Stuart (2009). "The story of phosphorus: Global food security and food for thought". Global Environmental Change. 19 (2): 292–305. doi:10.1016/j.gloenvcha.2008.10.009. ISSN   0959-3780. S2CID   1450932.
  3. 1 2 Van Kauwenbergh, Steven J. (2010). World Phosphate Rock Reserves and Resources. Muscle Shoals, AL, USA: International Fertilizer Development Center (IFDC). p. 60. ISBN   978-0-88090-167-3. Archived from the original on 19 August 2018. Retrieved 7 April 2016.
  4. Edixhoven, J.D.; Gupta, J.; Savenije, H.H.G. (2013). "Recent revisions of phosphate rock reserves and resources: reassuring or misleading? An in-depth literature review of global estimates of phosphate rock reserves and resources". Earth System Dynamics. 5 (2): 491–507. Bibcode:2014ESD.....5..491E. doi: 10.5194/esd-5-491-2014 .
  5. 1 2 Amundson, R.; Berhe, A. A.; Hopmans, J. W.; Olson, C.; Sztein, A. E.; Sparks, D. L. (2015). "Soil and human security in the 21st century". Science. 348 (6235): 1261071. doi:10.1126/science.1261071. ISSN   0036-8075. PMID   25954014. S2CID   206562728.
  6. 1 2 3 "USGS, Phosphate Rock Statistics and Information". Phosphate Rock Statistics and Information. January 2023. Retrieved 9 January 2023.
  7. Walan, P.; Davidsson, S.; Johansson, S.; Höök, M. (2014). "Phosphate rock production and depletion: Regional disaggregated modeling and global implications". Resources, Conservation and Recycling. 93 (12): 178–187. doi:10.1016/j.resconrec.2014.10.011 . Retrieved 9 October 2017.
  8. Neset, Tina-Simone S.; Cordell, Dana (2011). "Global phosphorus scarcity: identifying synergies for a sustainable future". Journal of the Science of Food and Agriculture. 92 (1): 2–6. doi:10.1002/jsfa.4650. PMID   21969145.
  9. Lewis, Leo (23 June 2008). "Scientists warn of lack of vital phosphorus as biofuels raise demands" (PDF). Times Online. Archived from the original (PDF) on 23 July 2011.
  10. 1 2 "IFDC Report Indicates Adequate Phosphorus Resources Available to Meet Global Food Demands". 22 September 2010.
  11. 1 2 Edixhoven, J. D.; Gupta, J.; Savenije, H. H. G. (2014). "Recent revisions of phosphate rock reserves and resources: a critique" (PDF). Earth System Dynamics. 5 (2): 491–507. Bibcode:2014ESD.....5..491E. doi: 10.5194/esd-5-491-2014 . ISSN   2190-4987.
  12. Rockström, J.; Steffen, K.; et al. (2009). "Planetary boundaries: exploring the safe operating space for humanity" (PDF). Ecology and Society. 14 (2): 32. doi: 10.5751/ES-03180-140232 .
  13. Arno Rosemarin (2016) Phosphorus a Limited Resource – Closing the Loop, Global Status of Phosphorus Conference, Malmö, Sweden (based on USGS Phosphate Rock Statistics and Information)
  14. 1 2 Sutton, M.A.; Bleeker, A.; Howard, C.M.; et al. (2013). Our Nutrient World: The challenge to produce more food and energy with less pollution (PDF). Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative. ISBN   978-1-906698-40-9. Archived from the original (PDF) on 2016-11-04. Retrieved 2015-05-12.
  15. CIM DEFINITION STANDARDS - For Mineral Resources and Mineral Reserves (PDF). CIM Standing Committee on Reserve Definitions. 2010. pp. 4–6. Archived from the original (PDF) on 14 February 2019.
  16. U.S. Geological Survey Phosphorus Soil Samples
  17. Abundance of Elements
  18. American Geophysical Union, Fall Meeting 2007, abstract #V33A-1161. Mass and Composition of the Continental Crust
  19. Cordell, Dana & Stuart White 2011. Review: Peak Phosphorus: Clarifying the Key Issues of a Vigorous Debate about Long-Term Phosphorus Security. Sustainability 2011, 3(10), 2027-2049; doi:10.3390/su3102027, http://www.mdpi.com/2071-1050/3/10/2027/htm
  20. Van Vuuren, D.P.; Bouwman, A.F.; Beusen, A.H.W. (2010). "Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion". Global Environmental Change. 20 (3): 428–439. doi:10.1016/j.gloenvcha.2010.04.004. ISSN   0959-3780.
  21. 1 2 Gilbert, Natasha (8 October 2009). "The disappearing nutrient". Nature. 461 (7265): 716–718. doi:10.1038/461716a. PMID   19812648. S2CID   4419892.
  22. Ahokas, K. (2015). "Finland's phosphorus resources are more important than ever (Geological Survey of Finland)". Archived from the original on 2019-05-06. Retrieved 2017-04-01.
  23. Pollan, Michael (11 April 2006). The Omnivore's Dilemma: A Natural History of Four Meals . Penguin Press. ISBN   978-1-59420-082-3.
  24. Heckenmüller, M.; Narita, D.; Klepper, G. (2014). "Global availability of phosphorus and its implications for global food supply: An economic overview" (PDF). Kiel Working Paper, No. 1897. Retrieved 11 May 2020.
  25. US Geological Survey, Phosphate Rock, 2021.
  26. Leigh, G. J. (2004). The World's Greatest Fix: A History of Nitrogen and Agriculture . Oxford University Press. ISBN   978-0-19-516582-1.
  27. 1 2 Skaggs, Jimmy M. (May 1995). The Great Guano Rush: Entrepreneurs and American Overseas Expansion. St. Martin's Press. ISBN   978-0-312-12339-0.
  28. soilassociation.org - A rock and a hard place, Peak phosphorus and the threat to our food security Archived 2010-12-23 at the Wayback Machine , 2010
  29. Burns, Melinda (10 February 2010). "The Story of P(ee)". Miller-McCune. Archived from the original on 7 January 2012. Retrieved 2 February 2012.
  30. Udawatta, Ranjith P.; Henderson, Gray S.; Jones, John R.; Hammer, David (2011). "Phosphorus and nitrogen losses in relation to forest, pasture and row-crop land use and precipitation distribution in the midwest usa". Journal of Water Science. 24 (3): 269–281. doi: 10.7202/1006477ar .
  31. Sartorius, C., von Horn, J., Tettenborn, F. (2011). Phosphorus recovery from wastewater – state-of-the-art and future potential. Conference presentation at Nutrient Recovery and Management Conference organised by International Water Association (IWA) and Water Environment Federation (WEF) in Florida, USA
  32. Hultman, B., Levlin, E., Plaza, E., Stark, K. (2003). Phosphorus Recovery from Sludge in Sweden - Possibilities to meet proposed goals in an efficient, sustainable and economical way.