Plasmanylethanolamine desaturase

Last updated
plasmanylethanolamine desaturase
Identifiers
EC no. 1.14.99.19
CAS no. 39391-13-4
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a plasmanylethanolamine desaturase (EC 1.14.99.19) is an enzyme that catalyzes the chemical reaction

O-1-alkyl-2-acyl-sn-glycero-3-phosphoethanolamine + AH2 + O2 O-1-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine + A + 2 H2O

The 3 substrates of this enzyme are O-1-alkyl-2-acyl-sn-glycero-3-phosphoethanolamine, an electron acceptor AH2, and O2, whereas its 3 products are O-1-alk-1-enyl-2-acyl-sn-glycero-3-phosphoethanolamine, the reduction product A, and H2O.

This enzyme belongs to the family of oxidoreductases, specifically those acting on paired donors, with O2 as oxidant and incorporation or reduction of oxygen. The oxygen incorporated need not be derive from O miscellaneous. The systematic name of this enzyme class is O-1-alkyl-2-acyl-sn-glycero-3-phosphoethanolamine,hydrogen-donor:oxy gen oxidoreductase. Other names in common use include alkylacylglycerophosphoethanolamine desaturase, alkylacylglycero-phosphorylethanolamine dehydrogenase, dehydrogenase, alkyl-acylglycerophosphorylethanolamine, 1-O-alkyl-2-acyl-sn-glycero-3-phosphorylethanolamine desaturase, and 1-O-alkyl 2-acyl-sn-glycero-3-phosphorylethanolamine desaturase. This enzyme participates in ether lipid metabolism. It requires NADPH.

Plasmanylethanolamine desaturase used to be described as an orphan enzyme, that is one whose activity is known but whose identity (gene, protein sequence) is unknown. It has now been identified and corresponds to protein CarF in bacteria and TMEM189 in humans (and animals). It contains the pfam10520 lipid desaturase domain which has 8 conserved histidines and which is also found in FAD4 plant desaturases. Mice lacking plasmanylethanolamine desaturase lack plasmalogens in their tissues and have reduced body weight.

Related Research Articles

<span class="mw-page-title-main">Glycerophospholipid</span> Class of lipids

Glycerophospholipids or phosphoglycerides are glycerol-based phospholipids. They are the main component of biological membranes in eukaryotic cells. They are a type of lipid, of which its composition affects membrane structure and properties. Two major classes are known: those for bacteria and eukaryotes and a separate family for archaea.

<span class="mw-page-title-main">Plasmalogen</span> Subclass of Glycerophospholipids

Glycerophospholipids of biochemical relevance are divided into three subclasses based on the substitution present at the sn-1 position of the glycerol backbone: acyl, alkyl and alkenyl. Of these, the alkyl and alkenyl moiety in each case form an ether bond, which makes for two types of ether phospholipids, plasmanyl, and plasmenyl. Plasmalogens are plasmenyls with an ester linked lipid at the sn-2 position of the glycerol backbone, chemically designated 1-0(1Z-alkenyl)-2-acyl-glycerophospholipids. The lipid attached to the vinyl ether at sn-1 can be C16:0, C18:0, or C18:1, and the lipid attached to the acyl group at sn-2 can be C22:6 ω-3 or C20:4 ω-6, . Plasmalogens are classified according to their head group, mainly as PC plasmalogens (plasmenylcholines) and PE plasmalogens (plasmenylethalomines) Plasmalogens should not be confused with plasmanyls.

<span class="mw-page-title-main">Ether lipid</span>

In an organic chemistry general sense, an ether lipid implies an ether bridge between an alkyl group and an unspecified alkyl or aryl group, not necessarily glycerol. If glycerol is involved, the compound is called a glyceryl ether, which may take the form of an alkylglycerol, an alkyl acyl glycerol, or in combination with a phosphatide group, a phospholipid.

In enzymology, a hexadecanol dehydrogenase (EC 1.1.1.164) is an enzyme that catalyzes the chemical reaction

In enzymology, a phosphatidylcholine desaturase (EC 1.14.19.22, previously EC 1.3.1.35) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Acyl-(acyl-carrier-protein) desaturase</span> Class of enzymes

In enzymology, an acyl-[acyl-carrier-protein] desaturase (EC 1.14.19.2) is an enzyme that catalyzes the chemical reaction

Alkylglycerol monooxygenase (AGMO) is an enzyme that catalyzes the hydroxylation of alkylglycerols, a specific subclass of ether lipids. This enzyme was first described in 1964 as a pteridine-dependent ether lipid cleaving enzyme. In 2010 finally, the gene coding for alkylglycerol monooxygenase was discovered as transmembrane protein 195 (TMEM195) on chromosome 7. In analogy to the enzymes phenylalanine hydroxylase, tyrosine hydroxylase, tryptophan hydroxylase and nitric oxide synthase, alkylglycerol monooxygenase critically depends on the cofactor tetrahydrobiopterin and iron.

In enzymology, a linoleoyl-CoA desaturase (also Delta 6 desaturase, EC 1.14.19.3) is an enzyme that converts between types of fatty acids, which are essential nutrients in the human body. The enzyme mainly catalyzes the chemical reaction

In enzymology, a phosphatidylcholine 12-monooxygenase (EC 1.14.13.26) is an enzyme that catalyzes the chemical reaction

In enzymology, an alkenylglycerophosphocholine hydrolase (EC 3.3.2.2) is an enzyme that catalyzes the chemical reaction

In enzymology, an alkenylglycerophosphoethanolamine hydrolase (EC 3.3.2.5) is an enzyme that catalyzes the chemical reaction

The enzyme 1-alkyl-2-acetylglycerophosphocholine esterase (EC 3.1.1.47) catalyzes the reaction

The enzyme alkylglycerophosphoethanolamine phosphodiesterase (EC 3.1.4.39) catalyzes the reaction

In enzymology, a 1-acylglycerol-3-phosphate O-acyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a 1-alkylglycerophosphocholine O-acetyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a 1-alkylglycerophosphocholine O-acyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a glycerophospholipid acyltransferase (CoA-dependent) is an enzyme that catalyzes the chemical reaction

In the field of enzymology, a glycerophospholipid arachidonoyl-transferase (CoA-independent) is an enzyme that catalyzes the chemical reaction:

In enzymology, a plasmalogen synthase is an enzyme that catalyzes the chemical reaction

In enzymology, a platelet-activating factor acetyltransferase is an enzyme that catalyzes the chemical reaction

References