Polistes gallicus

Last updated

Polistes gallicus
Wespe auf Blutenblattern-20200905-RM-081907.jpg
Polistes gallicus male
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Family: Vespidae
Subfamily: Polistinae
Tribe: Polistini
Genus: Polistes
Species:
P. gallicus
Binomial name
Polistes gallicus
Linnaeus, 1761
Distribution Map of Polistes gallicus.png
Distribution of P. gallicus in yellow
Synonyms
  • Polistes omissus(Weyrauch 1938)
Polistes gallicus female Wasp March 2008-3.jpg
Polistes gallicus female

Polistes gallicus is a species of paper wasp found in various parts of Europe, excluding England, Denmark, and Scandinavia, from warmer climates to cooler regions north of the Alps. [1] Nests of these social insects are created in these various conditions. The Polistes species use an oral secretion to construct their nests, which consist of a combination of saliva and chewed plant fibers. This structural mixture physically protects the nest from various harsh elements and from weathering over time. [2]

Contents

Description and identification

P. gallicus, like other members of the subgenus Polistes (Polistes), has recognizable, bright yellow and black markings. They have smaller bodies than many of its allies that overlap in range, and their bodies are largely hairless. [3] The species may be separated from allies through the following traits.

Females are identified by having 12 antennal segments and 6 abdominal segments. The antennae are orange and paler on the ventral surface than in many allies and have yellow-marked scapes. The malar space is short, under 0.75 times the distance between the lateral ocelli, and is black. They have slender mandibles that are mostly colored black with an excentric yellow spot on each. In contrast, the clypeus is yellow and often with a small but distinct black spot or band. As in many species within the subgenus, the mesoscutum has a pair of developed spots. Both the spots on the propodeum and continuous band on the fourth abdominal sternite are wide. Unlike species such as P. dominula , P. gallicus has a mostly black hypopygium. [4]

Males are identified by having 13 antennal segments and 7 abdominal segments. The head is roughly triangular as viewed from the front with a curved clypeus. The apical half of the antennae is entirely orange-yellow, and the final segment is slightly under twice as long as wide. The pronotum has a yellow band that widens toward the sides as well as short, straight hairs. The mesosternum is largely yellow, more so than in some allies. Both the mesoscutum and scutellum typically have distinct spots. The abdomen has the final sternite entirely black. [4]

Taxonomy and phylogeny

Polistes sp. visiting Euphorbia genoudiana Polistes gallicus - Euphorbia genoudiana ies.jpg
Polistes sp. visiting Euphorbia genoudiana

P. gallicus is a member of the family Vespidae, further classified under the Polistinae (the second-largest of the subfamilies), which consists of various social wasps. Within the larger subfamily Polistnae, Polistes species are categorized by their independent founding behavior, distinguishing them from swarm-founding species. [5] Furthermore, P. gallicus is one of about 200 species of wasps in the genus Polistes. [6]

P. gallicus is one of 27 members of the subgenus Polistes (Polistes), which are typically very similar black-and-yellow species. This similarity has resulted in taxonomic complications in older literature. For instance, many references prior to 1985 misapplied the name to the European paper wasp, P. dominula . [1] In terms of coloration, P. gallicus typically has yellow spots on the mandibles as well as a black hypopygium whereas P. dominula has often entirely black mandibles and always a largely yellow hypopygium. [4] Additionally, many published studies for which no vouchered reference specimens are available cannot be reliably assigned to either species. [1] P. gallicus is also very closely related to P. biglumis and P. mongolicus, which are members of the same species group. [7] The former synonyms, P. foederatus and P. mongolicus , were restored from synonymy following revision of the genus in 2017 and are considered as distinct species again. [4]

Distribution and habitat

The range of P. gallicus extends across much of Europe, where it is a common species. It can be found from northern Italy and southern Switzerland south into northwest Africa and east to Croatia and Corfu. [4] The species inhabits a variety of climates and habitats throughout this range, although it more frequently nests in warm and dry regions, where its nests are built hanging in the open with the cells towards the ground. In cooler regions north of the Alps, its nests are often built in more protective enclosures such as in pipes or metal scraps. [8] [2]

P. gallicus was first sighted in North America in Cambridge, Massachusetts in 1980 [9] and has remained established in Massachusetts ever since. [10] Also reported to be in Chile. [11]

Colony cycle

Polistes gallicus nest. Polistes gallicus (Vespidae) - (imago), Rio Guadaiza, Spain.jpg
Polistes gallicus nest.

Fertile foundress wasps come out of hibernation in the spring around mid May and build a new nest combining oral secretions with plant fibers, such as from sticks and bush branches, to make a paper pulp. A nest will begin to be constructed by late May to early April. Most nests are built by a single foundress, though in southern regions of Germany and Italy, two or more foundresses have been recorded building a cooperative nest. Each cell is formed in a hexagonal structure and are attached to a surface by a single stalk. The foundress will then lay a single egg directly in each brood cell. After about 2 weeks, the eggs hatch into larvae and are fed chunks of caterpillars, developing through 5 instar stages before pupating by spinning a cocoon to enclose its cell. Metamorphosis takes about 10 to 14 days before a mature adult wasp emerges. [12]

This first brood of each season emerges around May to early June and is exclusively female workers that tend to the nest as subordinates to the foundress. They help maintain the nest, tend to the brood by hunting, and defend the nest if it's threatened. The foundress can now focus her time on laying eggs. Beginning with the second brood, the larvae are able to be better fed by the early workers and emerge as bigger adults. The nest continues to grow into the summer months as more cells are needed for the brood. This summer brood takes a single month to mature. The size of the nest can reach as many as 500 to over 1000 cells in optimum conditions such as sheltered, warmer locations, though they are still smaller than in allied species of Polistes. Such nests may have hundreds of workers. [2]

By around June to July, some of the eggs laid by the foundress are willingly unfertilized so, instead of developing into female workers will more quickly develop into males. The females that emerge from around July to August, instead of contributing to the nest, instead store fat and develop their ovaries to become future foundresses. With the next generation of foundresses developing, the nest tends to decline in activity. When the original foundress dies, some workers may begin laying unfertilized eggs which, if they manage to develop, will be males.

The males that are produced congregate in unisexual clusters not far from the nest until November. They then occasionally mate with the future foundresses from other nests. As winter approaches, the workers and then the males die out, leaving only the newly fertilized foundresses to hibernate overwinter, in various shelters, until the following spring to begin a new colony cycle. This can be as many as two dozen, or more, foundresses.

Behavior

Diet

Paper wasp (Polistes dominula) chewing up a caterpillar French wasp eating a caterpillar.jpg
Paper wasp (Polistes dominula) chewing up a caterpillar

The wasp is omnivorous, feeding on fruits, flower's nectar, insects, snails, or larger animals' corpses. It feeds its brood after visiting numerous flowers, collecting nectar in addition to feeding them. Due to its dimensions, this species is suspected to transfer pollen to the stigma from its mostly hairless bodies, resulting in few to no pollen grains remaining on the body after foraging. [3]

Dominance hierarchy

Hormones play a role in the establishment of dominance hierarchies among P. gallicus. Dominant females tend to have more developed ovaries due to higher activity levels in their endocrine systems. A larger corpora allata also influences the determination of dominance. A higher reproductive capacity is indicative of the dominant female. [13]

Reproductive suppression

After a hierarchy is established, the dominant wasp remains the sole reproducer in the colony due to the inhibition of endocrine activity within the subordinate wasps. Various factors contribute to the possibility of inhibition, which might also lead to differences in endocrine activity. If subordinates happen to lay eggs after the hierarchy is formed, the dominant foundress will eat the eggs to ensure all laid eggs are of her own genes. [13]

Kin recognition and conflict

P. gallicus recognize their kin through Van der Vecht (VVS) organ secretions, which include a mixture of hydrocarbons that differ both between colonies and between the foundresses versus workers of a single colony. Workers can thus distinguish these differences, both to recognize their own foundress and to recognize wasps from another colony. In the case of alien wasps, workers may respond to these VVS with varying degrees of aggressiveness. Foundresses are also hypothesized to use peak activity in this organ as a repellant to defend the nest before it is populated. These VVS deposits on the nest may additionally indicate ownership to the queen and can inhibit ovarian development in the workers within the colony to prevent competition. [14]

Colonies of P. gallicus typically have one foundress that produces offspring, though all females, including workers, are capable of producing male offspring. This creates a trade-off in terms of reproductive activity between the foundress and her workers. The relatedness of a foundress to her son is 1/2 as compared to a worker to her brother of 1/4. In the case of a foundress that only mated once, a worker's relatedness to a fellow worker's male offspring is 3/8. This closer relatedness to the workers means that workers may favor handling male production instead of the foundress. However, in the case of a foundress that mated more than once, the workers relatedness to a male produced by the foundress instead will be less than that of fellow workers. [15] Because workers favor situations where the male brood are more closely related to them, [15] workers may attempt to prevent other workers from laying eggs if the foundress has mated more than once. [16]

As different colonies may have differences in the relatedness of workers, conflict over sex ratio arises. Fisher's theory of equal investment supports that a colony with a 50:50 sex ratio is the most beneficial due to both males and females having the same expected reproductive success. [17] In colonies with an active foundress, workers may not produce male offspring of their own if it means a healthier colony. Additionally, a foundress may eat the eggs laid by workers to maintain balance if she was unable to prevent workers from laying eggs in the first place. The reverse is expected to occur as well. Indirect evidence also supports the occurrence matricide within colonies, and queen death is noted to be high in P. gallicus. [15]

Interaction with other species

Predators

Ants are a major threat to colonies prior to the emergence of the first workers. Members of the genera Tapinoma , Pheidole , and Tetramorium are known to be able to decimate a young nest. These ants feed on both larvae and pupae. Advanced predation may result in a foundress having to begin a new nest from scratch or otherwise usurp the nest of another foundress. If there are already workers at the time, the colony swarms to a nearby point to being a new nest or, if there are many workers, the colony may split up to form several smaller nests. However, only the fertile foundress will produce female offspring to complete the colony cycle, and secondary nests will only produce male offspring. If one of the secondary nests is lost, such as to predation, its workers will instead rejoin a sister colony instead of trying to start a colony from scratch for a third time.[ citation needed ]

Parasites

Strepsipterans belonging to the genus Xenos are known to infect and parasitize the genus Polistes, with Xenos vesparum especially documented in P. gallicus. Young members of the colony are particularly susceptible while within the brood cell, in contrast to adults that have departed their cell. These Xenos parasites are most visible in pupae and neotenic adults, though may affect all live stages. When parasites have higher prevalence, individual brood members of a nest also tend to be hosts to multiple Xenos parasites. They tend to infect these wasps either through phoretic transport. Here, the parasite's first instar larvae are able to attach to wasps’ abdomens at flowering patches or by infecting masses by releasing close to combs from an infected wasp. Sometimes in brood with high levels of parasitized larval hosts, an adaptation of the parasite to enter the eggs might exist. [18]

Defense

Polistes species are known to use stings and venom as a means of colony defense. However, this venom seems to be costly to produce as they only release it after the sting in certain situations. Dangerous stimuli must first be perceived before they go out of their way, leaving a nest unattended, to attack. [19] In some situations, P. gallicus is known to exhibit aggressive behavior to wasps of a foreign colony. [14] While venom from a basic standpoint is used by solitary species to capture prey, it has served a greater purpose of defense in social colonies against colony vertebrate and invertebrate offenders. [19]

When it comes to alarm systems, Polistes species can communicate with others through vibrational and visual signals. It might actually be beneficial for a smaller colony of wasps to switch from alarm pheromones, common with these wasps, to these alternative signals when the colony grows in size. Alarm pheromones mixed with the composition of the venom can also be released. However, if this release occurs following the act of ejecting venom by the signaling wasps or if it is due to the actual release of the venom during the sting has yet to be determined . [19]

Human importance

Knowing venom chemistry from these species of wasps can lead to human advantages for pharmaceuticals. The chemical breakdown of venom allows for synthesis in immunology therapy due to the creation of more reliable and effective treatments for people with allergies. Studies which analyzed the way venom interacts with victims provided a mechanism for drugs to permeate cell membranes. Further studies on wasps could provide a mechanism to control overpopulation through the creation of artificial sex attractants. [19]

Allergic reaction-induced IgE-mediated anaphylaxis is commonly a result of hymenopteran stings. The composition of venom from a sting can even affect the types of treatment a patient should be given. Differences have been found between the composition of American and European Polistes venoms. Response to different epitope spectrums depends on the type of Polistes that did the stinging. P. gallicus venom was found to be a combination of four major allergens: Ag5 (antigen 5), hyaluronidase, phospholipase, and protease. This discovery has led to the addition of these allergens into a standard Polistes mix containing venom from North American species to improve diagnosis and therapy for European patients with Polistes allergies. [20]

Related Research Articles

<span class="mw-page-title-main">European paper wasp</span> Species of wasp

The European paper wasp is one of the most common and well-known species of social wasps in the genus Polistes. Its diet is more diverse than those of most Polistes species—many genera of insects versus mainly caterpillars in other Polistes—giving it superior survivability compared to other wasp species during a shortage of resources.

<i>Polistes humilis</i> Species of wasp

Polistes humilis, known as the Australian paper wasp, is a species of wasp in the family Vespidae that is found throughout Australia and which has been introduced to northern New Zealand. These paper wasps can be identified by their long thin legs and banded yellow and black coloring. They have been known to re-utilize old nests. While the species does not exhibit morphological class differences, there are distinct behavioral differences between queens and workers. In addition, the species is eusocial and benefits from relatedness between individuals. They are known for delivering a painful sting, especially when their nest is disturbed, a behavior that has been developed as a nest defense mechanism. While wasps are often viewed negatively, they play an important pollination role for many plants.

<i>Polistes chinensis</i> Species of wasp

Polistes chinensis is a polistine vespid wasp in the cosmopolitan genus Polistes, and is commonly known as the Asian, Chinese or Japanese paper wasp. It is found in East Asia, in particular China and Japan. The subspecies P. chinensis antennalis is an invasive species in New Zealand, having arrived in 1979.

<i>Polistes annularis</i> Species of wasp

Polistes annularis is a species of paper wasp found throughout the eastern half of the United States. This species of red paper wasp is known for its large size and its red-and-black coloration and is variably referred to as a ringed paper wasp or jack Spaniard wasp. It builds its nest under overhangs near bodies of water that minimize the amount of sunlight penetration. It clusters its nests together in large aggregations, and consumes nectar and other insects. Its principal predator is the ant, although birds are also known to prey on it. Unlike other wasps, P. annularis is relatively robust in winter conditions, and has also been observed to store honey in advance of hibernation. This species has also been used as a model species to demonstrate the ability to use microsatellite markers in maternity assignment of social insects.

<i>Polistes metricus</i> Species of wasp

Polistes metricus is a wasp native to North America. In the United States, it ranges throughout the southern Midwest, the South, and as far northeast as New York, but has recently been spotted in southwest Ontario. A single female specimen has also been reported from Dryden, Maine. P. metricus is dark colored, with yellow tarsi and black tibia. Nests of P. metricus can be found attached to the sides of buildings, trees, and shrubbery.

<i>Polistes fuscatus</i> Species of insect

Polistes fuscatus, whose common name is the dark or northern paper wasp, is widely found in eastern North America, from southern Canada through the southern United States. It often nests around human development. However, it greatly prefers areas in which wood is readily available for use as nest material, therefore they are also found near and in woodlands and savannas. P. fuscatus is a social wasp that is part of a complex society based around a single dominant foundress along with other cofoundresses and a dominance hierarchy.

<i>Polistes exclamans</i> Species of wasp

Polistes exclamans, the Guinea paper wasp, is a social wasp and is part of the family Vespidae of the order Hymenoptera. It is found throughout the United States, Mexico, the Bahamas, Jamaica and parts of Canada. Due to solitary nest founding by queens, P. exclamans has extended its range in the past few decades and now covers the eastern half of the United States, as well as part of the north. This expansion is typically attributed to changing global climate and temperatures. P. exclamans has three specific castes, including males, workers, and queens, but the dominance hierarchy is further distinguished by age. The older the wasp is, the higher it is in ranking within the colony. In most P. exclamans nests, there is one queen who lays all the eggs in the colony. The physiological similarities between the worker and queen castes have led to experiments attempting to distinguish the characteristics of these two castes and how they are determined, though males have easily identifiable physiological characteristics. Since P. exclamans live in relatively small, open combed nests, they are often subject to predators and parasites, such as Chalcoela iphitalis, Elasmus polistis, and birds. P. exclamans have defense and recognition strategies that help protect against these predators and parasites.

<i>Polistes carolina</i> Species of wasp

Polistes carolina is one of two species of red paper wasp found in the eastern United States and is noted for the finer ridges on its propodeum. It is a social wasp in the family Vespidae and subfamily Polistinae. The species is native to the United States from Texas to Florida, north to New York, and west to Nebraska. The wasp's common name is due to the reddish-brown color of its head and body. P. carolina prefer to build their nests in protected spaces.

<i>Dolichovespula arenaria</i> Species of wasp

Dolichovespula arenaria, also known as the common aerial yellowjacket, sandhills hornet, and common yellow hornet, is a species of wasp within the genus Dolichovespula widely distributed in the North American continent.

<i>Polistes nimpha</i> Species of wasp

Polistes nimpha is a eusocial paper wasp found all over Europe, with particular sightings in Turkey, Finland, Estonia, and Latvia. It is also found in northern Africa, Pakistan, Iran, India, Kazakhstan, Mongolia, and China. The climate in these areas is relatively cold and snowy in the winter, while summers are usually hot and dry, with steppe vegetation. Polistes nimpha colonies are relatively small and easily manipulated.

<i>Polistes bellicosus</i> Species of insect

Polistes bellicosus is a social paper wasp from the order Hymenoptera typically found within Texas, namely the Houston area. Like other paper wasps, Polistes bellicosus build nests by manipulating exposed fibers into paper to create cells. P. bellicosus often rebuild their nests at least once per colony season due to predation.

<i>Polistes canadensis</i> Species of wasp

Polistes canadensis is a species of red paper wasp found in the Neotropical realm. It is a primitively eusocial wasp as a member of the subfamily Polistinae. A largely predatory species, it hunts for caterpillar meat to supply its colony, often supplementing its developing larvae with nectar. The most widely distributed American species of the genus Polistes, it colonizes multiple combs, which it rears year-round.

<i>Polistes atrimandibularis</i> Species of wasp

Polistes atrimandibularis is one of four obligate social parasites among the Polistes wasps found in Europe. Of the four social paper wasp parasite species known, it is the smallest. It parasitizes multiple species such as P. dominula, P. nimpha, P. associus, P. gallicus, and P. biglumis. Females of P. atrimandibularis are unable to build a nest or produce workers, and therefore rely entirely on the host colony.

<i>Belonogaster petiolata</i> Species of wasp

Belonogaster petiolata is a species of primitively eusocial wasp that dwells in southern Africa, in temperate or subhumid climate zones. This wasp species has a strong presence in South Africa and has also been seen in northern Johannesburg. Many colonies can be found in caves. The Sterkfontein Caves in South Africa, for example, contain large populations of B. petiolata.

<i>Polistes biglumis</i> Species of wasp

Polistes biglumis is a species of social wasp within Polistes, the most common genus of paper wasp. It is distinguished mainly by its tendency to reside in montane climates in meadows or alpine areas. Selection pressure from the wasp's environment has led to several idiosyncrasies of its behavior and lifecycle with respect to its relative species in the genus Polistes. It alone among paper wasps is often polyandrous. In addition, it has a truncated nesting season that gives rise to unique competitive dynamics among females of the species. P. biglumis wasps use an odor-based recognition system that is the basis for all wasp-to-wasp interaction of the species. The wasp's lifecycle is highly intertwined with that of Polistes atrimandibularis, an obligate social parasite wasp that frequently invades the combs of P. biglumis wasps.

<i>Polistes semenowi</i> Species of wasp

Polistes semenowi is a species of paper wasp in the genus Polistes that is found in southeastern and southern central Europe, as well as central Asia, and was until 2017 erroneously known by the name Polistes sulcifer, while a different species was incorrectly believed to represent P. semenowi. It is one of only four known Polistes obligate social parasites, sometimes referred to as "cuckoo paper wasps", and its host is the congeneric species Polistes dominula. As an obligate social parasite, this species has lost the ability to build nests, and relies on the host workers to raise its brood. P. semenowi females use brute force, followed by chemical mimicry in order to successfully usurp a host nest and take over as the queen.

<i>Polistes japonicus</i> Species of wasp

Polistes japonicus is a eusocial paper wasp found in Japan. It was first described by Henri Louis Frédéric de Saussure in 1858. It is closely related to Polistes formosanus. This species lives in small colonies with few workers and a foundress queen. Nests of these wasps are sometimes used as a traditional medicine in Korea, China, and Japan.

<i>Polistes versicolor</i> Species of wasp

Polistes versicolor, also known as the variegated paper wasp or yellow paper wasp, is a subtropical social wasp within Polistes, the most common genus of paper wasp. It is the most widely distributed of South American wasp species and is particularly common in the Southeastern Brazilian states. This social wasp is commonly referred to as the yellow paper wasp due to the distinct yellow bands found on its thorax and abdomen. The P. versicolor nest, made of chewed vegetable fiber, is typically a single, uncovered comb attached to the substrate by a single petiole. The yellow wasp is frequently found in urban areas. New nests and colonies are usually founded by an association of females, sometimes in human buildings.

<i>Polistes dorsalis</i> Species of wasp

Polistes dorsalis is a species of social wasps that can be found throughout various parts of North America. It is classified under the Vespidae within the genus of Polistes. Male Polistes dorsalis wasps can be distinguished from other Polistes species by their distinctly prominent median tubercle of sternum 7. Both sexes can also be recognized due to their v- shaped yellow markings on their head. They are distributed widely across North America and can be found in sheltered nests, typically closer to the ground. These wasps live in a dominance hierarchy in which the queen's role differs from that of ordinary workers. When threatened, these wasps can deliver moderately painful stings. Their venom might also be of human interest for their antimicrobial uses.

Polistes erythrocephalus is a species of paper wasp in the subfamily Polistinae of family Vespidae found in Central and South America. P. erythrocephalus is a eusocial wasp, meaning that it possesses both reproductive and non-reproductive castes. The cooperation between the two castes to raise young demonstrates the altruistic nature of these wasps. P. erythrocephalus exhibits a four-stage colony cycle, as do many other Polistes wasps. This species generally feeds on larvae, occasionally their own, and is preyed upon by species such as army ants.

References

  1. 1 2 3 O’Donnell, Sean (1998). "Reproductive caste determination in eusocial wasps (Hymenoptera: Vespidae )" (PDF). Annual Review of Entomology. 43 (1): 323–346. doi:10.1146/annurev.ento.43.1.323. PMID   15012393. Archived from the original (PDF) on 24 September 2015. Retrieved 23 September 2014.
  2. 1 2 3 Bagriacik, Nil (2012). "Comparison of the nest materials of Polistes gallicus (L.), Polistes dominulus (Christ) and Polistes nimpha (Christ) (Hymenoptera: Vespidae)" (PDF). Arch. Biol. Sci. 64 (3): 1079–1084. doi: 10.2298/abs1203079b . Retrieved 20 September 2014.
  3. 1 2 Dafni, A.; R. Dukas (1986). "Insect and wind pollination in Urginea maritima (Liliaceae)". Plant Systematics and Evolution. 154 (1–2): 1–10. doi:10.1007/bf00984864. S2CID   917261.
  4. 1 2 3 4 5 Schmid-Egger, Christian; Kees van Achterberg; Rainer Neumeyer; Jérôme Morinière; Stefan Schmidt (2017). "Revision of the West Palaearctic Polistes Latreille, with the descriptions of two species – an integrative approach using morphology and DNA barcodes (Hymenoptera, Vespidae)". ZooKeys (713): 53–112. doi: 10.3897/zookeys.713.11335 . PMC   5674218 . PMID   29134040.
  5. Arevalo, Elisabeth; Yong Zhu; James M Carpenter; Joan E Strassman (2004). "The phylogeny of the social wasp subfamily Polistinae: evidence from microsatellite flanking sequences, mitochondrial COI sequence, and morphological characters". BMC Evolutionary Biology. 4 (8): 8. doi: 10.1186/1471-2148-4-8 . PMC   385225 . PMID   15070433.
  6. Cervo, R (2006). "Polistes wasps and their social parasites: an overview" (PDF). Annales Zoologici Fennici. 43 (5/6): 531–549. JSTOR   23736760.
  7. Larch, Rainer; Hannes Baur; Gaston-Denis Guex; Christophe Praz (2004). "A new species of the paper wasp genus Polistes (Hymenoptera, Vespidae, Polistinae) in Europe revealed by morphometrics and molecular analyses". ZooKeys (400): 67–118. doi: 10.3897/zookeys.400.6611 . PMC   4023243 . PMID   24843256.
  8. "Polistes gallicus (Linnaeus, 1767)." European Environment Agency, n.d. Web. 22 Sept. 2014. <http://eunis.eea.europa.eu/species/216123>
  9. Hathaway, Mary A. (1981-01-01). "Polistes Gallicus in Massachusetts (Hymenoptera: Vespidae)". Psyche: A Journal of Entomology . 88 (1–2). Hindawi Limited / Cambridge Entomological Club: 169–173. doi: 10.1155/1981/94216 . ISSN   0033-2615.
  10. "The Non-Native Paper Wasp That Massachusetts Residents Sometimes Confuse With Yellow Jackets". Merrimack Pest Control. 2019-04-04. Retrieved 2020-12-14.
  11. "Polistes gallicus". Centre for Agriculture and Bioscience International Invasive Species Compendium . 2019-11-25. Retrieved 2020-12-14.
  12. Hudson, K. Reeve (1991). "Polistes". In Kenneth G. Ross & Robert W. Mathew. The Social Biology of Wasps. Cornell University Press. pp. 99–148. ISBN   978-0-8014-9906-7.
  13. 1 2 Röseler, Peter-Frank; Ingeborg Röseler; Alain Strambi; Roger Augier (1984). "Influence of Insect Hormones on the Establishment of Dominance Hierarchies among Foundresses of the Paper Wasp, Polistes gallicus". Behavioral Ecology and Sociobiology. 15 (2): 133–142. doi:10.1007/bf00299381. JSTOR   4599709. S2CID   30682118.
  14. 1 2 Dapporto, Leonardo; Antonio Santini; Francesca R. Dani; Stefano Turillazzi (2007). "Workers of a Polistes Paper Wasp Detect the Presence of Their Queen by Chemical Cues". Chemical Senses. 32 (8): 795–802. doi: 10.1093/chemse/bjm047 . PMID   17644826.
  15. 1 2 3 Strassmann, JE; Nguyen JS; Arévalo E; Cervo R; Zacchi F; et al. (2003). "Worker interest and male production in Polistes gallicus, a Mediterranean social wasp" (PDF). Journal of Evolutionary Biology. 16 (2): 254–259. doi: 10.1046/j.1420-9101.2003.00516.x . PMID   14635864 . Retrieved 18 September 2014.
  16. Ratnieks, F.L.W. (August 1988). "Reproductive harmony via mutual policing by workers in eusocial hymenoptera". The American Naturalist. 132 (2): 217–236. doi:10.1086/284846. JSTOR   2461867. S2CID   84742198.
  17. Davies, N.B.; Krebs, J.R.; West, Stuart A. (2012). An Introduction to Behavioural Ecology. Oxford: Wiley-Blackwell. pp. 367–389. ISBN   978-1-4051-1416-5.
  18. Hughes, D.P.; J. Kathirithamby; L. Beani (2004). "Prevalence of the parasite Strepsiptera in adult Polistes wasps: field collections and literature overview". Ethology, Ecology and Evolution. 16 (4): 363–375. doi:10.1080/08927014.2004.9522627. S2CID   28288452.
  19. 1 2 3 4 Turillazzi, Stefano (December 2006). "Polistes venom: a multifunctional secretion" (PDF). Annales Zoologici Fennici. 43 (5–6): 488–499. Retrieved 24 September 2014.
  20. Pantera, Barbara; Donald R. Hoffman; Lara Carresi; Gianni Cappugi; Stefano Turillazzi; Giampaolo Manao; Maurizio Severino (2003-10-13). "Characterization of the major allergens purified from the venom of the paper wasp Polistes gallicus". Biochimica et Biophysica Acta (BBA) - General Subjects. 1623 (2): 72–81. doi:10.1016/j.bbagen.2003.07.001. PMID   14572904.