Pritelivir

Last updated
Pritelivir
BAY 57-1293 structure.svg
Names
Systematic IUPAC name
N-Methyl-N-(4-methyl-5-sulfamoyl-1,3-thiazol-2-yl)-2-[4-(pyridin-2-yl)phenyl]acetamide
Identifiers
3D model (JSmol)
ChemSpider
KEGG
PubChem CID
UNII
  • InChI=1S/C18H18N4O3S2/c1-12-17(27(19,24)25)26-18(21-12)22(2)16(23)11-13-6-8-14(9-7-13)15-5-3-4-10-20-15/h3-10H,11H2,1-2H3,(H2,19,24,25)
    Key: IVZKZONQVYTCKC-UHFFFAOYSA-N
  • InChI=1/C18H18N4O3S2/c1-12-17(27(19,24)25)26-18(21-12)22(2)16(23)11-13-6-8-14(9-7-13)15-5-3-4-10-20-15/h3-10H,11H2,1-2H3,(H2,19,24,25)
    Key: IVZKZONQVYTCKC-UHFFFAOYAL
  • Cc1c(sc(n1)N(C)C(=O)Cc2ccc(cc2)c3ccccn3)S(=O)(=O)N
Properties
C18H18N4O3S2
Molar mass 402.49 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Pritelivir (development codes AIC316 or BAY 57-1293) is a direct-acting antiviral drug in development for the treatment of herpes simplex virus infections (HSV). This is particularly important in immune compromised patients. It is currently in Phase III clinical development by the German biopharmaceutical company AiCuris Anti-infective Cures AG. US FDA granted fast track designation for pritelivir in 2017 and breakthrough therapy designation 2020.

Contents

Medical use

Pritelivir is currently being developed for the treatment of immunocompromised patients with mucocutaneous HSV lesions that are resistant to acyclovir.

HSV in immunocompromised patients

Although HSV infection is very common in the general population, it rarely causes serious disease and is effectively contained by the immune system. In those with a weakened immune system such as transplant recipients, people receiving chemo- or radiotherapy, or HIV patients, an active HSV infection can cause disease in 35-68% of patients and may become severe or even life-threatening. [1]

Standard of care treatments

HSV treatment revolves around the use of nucleoside analogues (NA) which act via the viral DNA polymerase, causing DNA chain termination and prevention of viral replication. First-line treatment is generally acyclovir or its prodrug valacyclovir. Resistance to acyclovir is more common in HSV patients with weakened or suppressed immune systems, affecting between 4 and 25% of cases. [2] [3] [4] [5] [6]

Resistance to standard treatments

If HSV drug resistance is mediated by mutation(s) of the viral UL23 gene, which encodes the viral thymidine kinase (TK), then the pyrophosphate analogue foscarnet may be effective as a rescue treatment, since it does not require activation by TK. The use of foscarnet is commonly accompanied by restrictive toxicity, particularly nephrotoxicity. [7] If the virus also acquires resistance to foscarnet, then there is currently no FDA approved treatment.

Clinical research

Completed phase II clinical trials in otherwise healthy patients with genital herpes

Ongoing phase II / phase III clinical trials with pritelivir

A phase II / III multinational, comparator-controlled, clinical trial in immunocompromised patients with acyclovir-resistant mucocutaneous lesions is listed on ClinicalTrials.gov [12] and EudraCT. [13]

Pharmacology

Mechanism of action

Pritelivir is a member of the helicase-primase inhibitors (HPI), a novel class of direct-acting antiviral drugs acting specifically against HSV-1 and HSV-2. [14] [15] As the name suggests, the drugs act through inhibition of the viral helicase primase complex, encoded by the UL5 (helicase), UL8 (scaffold protein) and UL52 (primase) genes, which is essential for HSV replication. [16] The helicase primase complex is encoded separately from the viral DNA polymerase (encoded by the UL30 gene). Because HPIs i) do not target the viral DNA polymerase and ii) do not require activation by the viral thymidine kinase enzyme (encoded by the UL23 gene), mutations causing resistance to NAs are not protective against HPIs. Similarly, resistance to HPIs does not confer resistance to NAs.

See also

Related Research Articles

<span class="mw-page-title-main">Aciclovir</span> Antiviral medication used against herpes, chickenpox, and shingles

Aciclovir, also known as acyclovir, is an antiviral medication. It is primarily used for the treatment of herpes simplex virus infections, chickenpox, and shingles. Other uses include prevention of cytomegalovirus infections following transplant and severe complications of Epstein–Barr virus infection. It can be taken by mouth, applied as a cream, or injected.

<span class="mw-page-title-main">Valaciclovir</span> Antiviral medication

Valaciclovir, also spelled valacyclovir, is an antiviral medication used to treat outbreaks of herpes simplex or herpes zoster (shingles). It is also used to prevent cytomegalovirus following a kidney transplant in high risk cases. It is taken by mouth.

<span class="mw-page-title-main">Ganciclovir</span> Chemical compound

Ganciclovir, sold under the brand name Cytovene among others, is an antiviral medication used to treat cytomegalovirus (CMV) infections.

<span class="mw-page-title-main">Viral encephalitis</span> Medical condition

Viral encephalitis is inflammation of the brain parenchyma, called encephalitis, by a virus. The different forms of viral encephalitis are called viral encephalitides. It is the most common type of encephalitis and often occurs with viral meningitis. Encephalitic viruses first cause infection and replicate outside of the central nervous system (CNS), most reaching the CNS through the circulatory system and a minority from nerve endings toward the CNS. Once in the brain, the virus and the host's inflammatory response disrupt neural function, leading to illness and complications, many of which frequently are neurological in nature, such as impaired motor skills and altered behavior.

<span class="mw-page-title-main">Brivudine</span> Chemical compound

Brivudine is an antiviral drug used in the treatment of herpes zoster ("shingles"). Like other antivirals, it acts by inhibiting replication of the target virus.

<span class="mw-page-title-main">Herpes simplex virus</span> Species of virus

Herpes simplex virus1 and 2, also known by their taxonomic names Human alphaherpesvirus 1 and Human alphaherpesvirus 2, are two members of the human Herpesviridae family, a set of viruses that produce viral infections in the majority of humans. Both HSV-1 and HSV-2 are very common and contagious. They can be spread when an infected person begins shedding the virus.

<span class="mw-page-title-main">Genital herpes</span> Infection by herpes simplex viruses of the genitals

Genital herpes is a herpes infection of the genitals caused by the herpes simplex virus (HSV). Most people either have no or mild symptoms and thus do not know they are infected. When symptoms do occur, they typically include small blisters that break open to form painful ulcers. Flu-like symptoms, such as fever, aching, or swollen lymph nodes, may also occur. Onset is typically around 4 days after exposure with symptoms lasting up to 4 weeks. Once infected further outbreaks may occur but are generally milder.

<span class="mw-page-title-main">Foscarnet</span> Chemical compound

Foscarnet (phosphonomethanoic acid), known by its brand name Foscavir, is an antiviral medication which is primarily used to treat viral infections involving the Herpesviridae family. It is classified as a pyrophosphate analog DNA polymerase inhibitor. Foscarnet is the conjugate base of a chemical compound with the formula HO2CPO3H2 (Trisodium phosphonoformate).

Herpes gladiatorum is one of the most infectious of herpes-caused diseases, and is transmissible by skin-to-skin contact. The disease was first described in the 1960s in the New England Journal of Medicine. It is caused by contagious infection with human herpes simplex virus type 1 (HSV-1), which more commonly causes oral herpes. Another strain, HSV-2 usually causes genital herpes, although the strains are very similar and either can cause herpes in any location.

Lawrence Corey is an American immunologist and virologist known for his work in the development of antiviral therapies and vaccines, particularly for herpes simplex virus (HSV) and HIV/AIDS.

<span class="mw-page-title-main">Mollaret's meningitis</span> Medical condition

Mollaret's meningitis is a recurrent or chronic inflammation of the protective membranes covering the brain and spinal cord, known collectively as the meninges. Since Mollaret's meningitis is a recurrent, benign (non-cancerous), aseptic meningitis, it is also referred to as benign recurrent lymphocytic meningitis. It was named for Pierre Mollaret, the French neurologist who first described it in 1944.

<span class="mw-page-title-main">Herpes</span> Viral disease caused by herpes simplex viruses

Herpes simplex, often known simply as herpes, is a viral infection caused by the herpes simplex virus. Herpes infections are categorized by the area of the body that is infected. The two major types of herpes are oral herpes and genital herpes, though other forms also exist.

<span class="mw-page-title-main">Herpes meningitis</span> Medical condition

Herpes meningitis is inflammation of the meninges, the protective tissues surrounding the spinal cord and brain, due to infection from viruses of the Herpesviridae family - the most common amongst adults is HSV-2. Symptoms are self-limiting over 2 weeks with severe headache, nausea, vomiting, neck-stiffness, and photophobia. Herpes meningitis can cause Mollaret's meningitis, a form of recurrent meningitis. Lumbar puncture with cerebrospinal fluid results demonstrating aseptic meningitis pattern is necessary for diagnosis and polymerase chain reaction is used to detect viral presence. Although symptoms are self-limiting, treatment with antiviral medication may be recommended to prevent progression to Herpes Meningoencephalitis.

<span class="mw-page-title-main">Herpes simplex encephalitis</span> Encephalitis associated with herpes simplex virus

Herpes simplex encephalitis (HSE), or simply herpes encephalitis, is encephalitis due to herpes simplex virus. It is estimated to affect at least 1 in 500,000 individuals per year, and some studies suggest an incidence rate of 5.9 cases per 100,000 live births.

<span class="mw-page-title-main">Cold sore</span> Herpes simplex virus infection of the lip

A cold sore is a type of herpes infection caused by the herpes simplex virus that affects primarily the lip. Symptoms typically include a burning pain followed by small blisters or sores. The first attack may also be accompanied by fever, sore throat, and enlarged lymph nodes. The rash usually heals within ten days, but the virus remains dormant in the trigeminal ganglion. The virus may periodically reactivate to create another outbreak of sores in the mouth or lip.

<span class="mw-page-title-main">Herpes esophagitis</span> Medical condition

Herpes esophagitis is a viral infection of the esophagus caused by Herpes simplex virus (HSV).

Herpes simplex research includes all medical research that attempts to prevent, treat, or cure herpes, as well as fundamental research about the nature of herpes. Examples of particular herpes research include drug development, vaccines and genome editing. HSV-1 and HSV-2 are commonly thought of as oral and genital herpes respectively, but other members in the herpes family include chickenpox (varicella/zoster), cytomegalovirus, and Epstein-Barr virus. There are many more virus members that infect animals other than humans, some of which cause disease in companion animals or have economic impacts in the agriculture industry.

<span class="mw-page-title-main">Herpes simplex keratitis</span> Medical condition

Herpetic simplex keratitis is a form of keratitis caused by recurrent herpes simplex virus (HSV) infection in the cornea.

A helicase–primase complex is a complex of enzymes including DNA helicase and DNA primase. A helicase-primase associated factor protein may also be present.

HSV epigenetics is the epigenetic modification of herpes simplex virus (HSV) genetic code.

References

  1. Wilck, M.B.; Zuckerman, R.A.; A. S. T. Infectious Diseases Community of Practice (2013). "Herpes simplex virus in solid organ transplantation". Am J Transplant. 13 (Suppl 4): 121–7. doi: 10.1111/ajt.12105 . PMID   23465005. S2CID   44969727.
  2. Zuckerman, R.; Wald, A.; A. S. T. Infectious Diseases Community of Practice (2009). "Herpes simplex virus infections in solid organ transplant recipients". Am J Transplant. 9 (Suppl 4): S104-7. doi: 10.1111/j.1600-6143.2009.02900.x . PMID   20070669. S2CID   205846431.
  3. Frobert, E.; Burrel, S.; Ducastelle-Lepretre, S.; Billaud, G.; Ader, F.; Casalegno, J.S. (2014). "Resistance of herpes simplex viruses to acyclovir: an update from a ten-year survey in France". Antiviral Res. 111: 36–41. doi:10.1016/j.antiviral.2014.08.013. PMID   25218782.
  4. Patel, D.; Marchaim, D.; Marcus, G.; Gayathri, R.; Lephart, P.R.; Lazarovitch, T.; Zaidenstein, R.; Chandrasekar, P. (2014). "Predictors and outcomes of acyclovir-resistant herpes simplex virus infection among hematopoietic cell transplant recipients: case-case-control investigation". Clin Transplant. 28 (1): 1–5. doi:10.1111/ctr.12227. PMID   24033498. S2CID   37729458.
  5. Danve-Szatanek, C.; Aymard, M.; Thouvenot, D.; Morfin, F.; Agius, G.; Bertin, I. (2004). "Surveillance network for herpes simplex virus resistance to antiviral drugs: 3-year follow-up". J Clin Microbiol. 42 (1): 242–9. doi:10.1128/JCM.42.1.242-249.2004. PMC   321677 . PMID   14715760.
  6. Chakrabarti, R.; Pillay, D.; Ratcliffe, D.; Cane, P.A.; Collingham, K.E.; Milligan, D.W. (2000). "Resistance to antiviral drugs in herpes simplex virus infections among allogeneic stem cell transplant recipients: risk factors and prognostic significance". J Infect Dis. 181 (6): 2055–8. doi:10.1086/315524. PMID   10837192.
  7. SmPC
  8. NCT01047540
  9. Wald, A.; Timmler, B.; Magaret, A.; Warren, T.; Trying, S. (2014). "Helicase-primase inhibitor pritelivir for HSV-2 infection". N Engl J Med. 370 (3): 201–10. doi: 10.1056/NEJMoa1301150 . PMID   24428466.
  10. NCT01658826
  11. Wald, A.; Timmler, B.; Warren, T.; Trying, S.; Johnston, C. (2016). "Effect of Pritelivir Compared With Valacyclovir on Genital HSV-2 Shedding in Patients With Frequent Recurrences: A Randomized Clinical Trial". JAMA. 316 (23): 2495–2503. doi:10.1001/jama.2016.18189. hdl: 1805/14200 . PMID   27997653.
  12. NCT03073967
  13. 2020-004940-27
  14. Biswas, S.; Jennens, L.; Field, H.J. (2007). "Single amino acid substitutions in the HSV-1 helicase protein that confer resistance to the helicase-primase inhibitor BAY 57-1293 are associated with increased or decreased virus growth characteristics in tissue culture". Arch Virol. 152 (8): 1489–500. doi:10.1007/s00705-007-0964-7. PMID   17404685. S2CID   23688945.
  15. Field, H.J.; Biswas, S. (2011). "Antiviral drug resistance and helicase-primase inhibitors of herpes simplex virus". Drug Resist Updat. 14 (1): 45–51. doi:10.1016/j.drup.2010.11.002. PMID   21183396.
  16. Crute, J.J.; Tsurumi, T.; Zhu, L.A.; Weller, S.K.; Olivo, P.D.; Challberg, M.D. (1989). "Herpes simplex virus 1 helicase-primase: a complex of three herpes-encoded gene products". Proc. Natl. Acad. Sci. U.S.A. 86 (7): 2186–2189. Bibcode:1989PNAS...86.2186C. doi: 10.1073/pnas.86.7.2186 . PMC   286876 . PMID   2538835.