Quinate dehydrogenase (quinone)

Last updated
Quinate dehydrogenase (quinone)
Identifiers
EC no. 1.1.5.8
CAS no. 115299-99-5
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Quinate dehydrogenase (quinone) (EC 1.1.5.8, NAD(P)+-independent quinate dehydrogenase, quinate:pyrroloquinoline-quinone 5-oxidoreductase) is an enzyme with systematic name quinate:quinol 3-oxidoreductase. [1] [2] [3] This enzyme catalyses the following chemical reaction

quinate + quinone 3-dehydroquinate + quinol

This enzyme is membrane-bound.

Related Research Articles

<span class="mw-page-title-main">Pyrroloquinoline quinone</span> Chemical compound

Pyrroloquinoline quinone (PQQ), also called methoxatin, is a redox cofactor and antioxidant.

<span class="mw-page-title-main">Methanol dehydrogenase</span>

In enzymology, a methanol dehydrogenase (MDH) is an enzyme that catalyzes the chemical reaction:

In enzymology, a quinate dehydrogenase (EC 1.1.1.24) is an enzyme that catalyzes the chemical reaction

In enzymology, an alcohol dehydrogenase (acceptor) (EC 1.1.99.8) is an enzyme that catalyzes the chemical reaction

In enzymology, a choline dehydrogenase is an enzyme that catalyzes the chemical reaction

In enzymology, a quinoprotein glucose dehydrogenase is an enzyme that catalyzes the chemical reaction

In enzymology, an aldehyde dehydrogenase (pyrroloquinoline-quinone) (EC 1.2.99.3) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Ribosyldihydronicotinamide dehydrogenase (quinone)</span>

In enzymology, a ribosyldihydronicotinamide dehydrogenase (quinone) (EC 1.10.99.2) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NAD(P)H dehydrogenase (quinone)</span>

In enzymology, a NAD(P)H dehydrogenase (quinone) (EC 1.6.5.2) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NAD(P)H dehydrogenase (quinone 1)</span> Protein-coding gene in the species Homo sapiens

NAD(P)H dehydrogenase [quinone] 1 is an enzyme that in humans is encoded by the NQO1 gene. This protein-coding gene is a member of the NAD(P)H dehydrogenase (quinone) family and encodes a 2-electron reductase (enzyme). This FAD-binding protein forms homodimers and performs two-electron reduction of quinones to hydroquinones and of other redox dyes. It has a preference for short-chain acceptor quinones, such as ubiquinone, benzoquinone, juglone and duroquinone. This gene has an important paralog NQO2. This protein is located in the cytosol.

<span class="mw-page-title-main">NAD(P)H dehydrogenase, quinone 2</span> Protein-coding gene in the species Homo sapiens

NAD(P)H dehydrogenase, quinone 2, also known as QR2, is a protein that in humans is encoded by the NQO2 gene. It is a phase II detoxification enzyme which can carry out two or four electron reductions of quinones. Its mechanism of reduction is through a ping-pong mechanism involving its FAD cofactor. Initially in a reductive phase NQO2 binds to reduced dihydronicotinamide riboside (NRH) electron donor, and mediates a hydride transfer from NRH to FAD. Then, in an oxidative phase, NQO2 binds to its quinone substrate and reduces the quinone to a dihydroquinone. Besides the two catalytic FAD, NQO2 also has two zinc ions. It is not clear whether the metal has a catalytic role. NQO2 is a paralog of NQO1.

Quinate/shikimate dehydrogenase (EC 1.1.1.282, YdiB) is an enzyme with systematic name L-quinate:NAD(P)+ 3-oxidoreductase. This enzyme catalyses the following chemical reaction

Alcohol dehydrogenase (cytochrome c) (EC 1.1.2.8, type I quinoprotein alcohol dehydrogenase, quinoprotein ethanol dehydrogenase) is an enzyme with systematic name alcohol:cytochrome c oxidoreductase. This enzyme catalyses the following chemical reaction

Alcohol dehydrogenase (quinone) (EC 1.1.5.5, type III ADH, membrane associated quinohaemoprotein alcohol dehydrogenase) is an enzyme with systematic name alcohol:quinone oxidoreductase. This enzyme catalyses the following chemical reaction

Cyclic alcohol dehydrogenase (quinone) (EC 1.1.5.7, cyclic alcohol dehydrogenase, MCAD) is an enzyme with systematic name cyclic alcohol:quinone oxidoreductase. This enzyme catalyses the following chemical reaction

Alcohol dehydrogenase (azurin) (EC 1.1.9.1, type II quinoprotein alcohol dehydrogenase, quinohaemoprotein ethanol dehydrogenase, QHEDH, ADHIIB) is an enzyme with systematic name alcohol:azurin oxidoreductase. This enzyme catalyses the following chemical reaction

Soluble quinoprotein glucose dehydrogenase is an enzyme with systematic name D-glucose:acceptor oxidoreductase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Fumarate reductase (quinol)</span>

Fumarate reductase (quinol) (EC 1.3.5.4, QFR,FRD, menaquinol-fumarate oxidoreductase, quinol:fumarate reductase) is an enzyme with systematic name succinate:quinone oxidoreductase. This enzyme catalyzes the following chemical reaction:

<span class="mw-page-title-main">NADH:ubiquinone reductase (non-electrogenic)</span> Class of enzymes

NADH:ubiquinone reductase (non-electrogenic) (EC 1.6.5.9, NDH-2, ubiquinone reductase, coenzyme Q reductase, dihydronicotinamide adenine dinucleotide-coenzyme Q reductase, DPNH-coenzyme Q reductase, DPNH-ubiquinone reductase, NADH-coenzyme Q oxidoreductase, NADH-coenzyme Q reductase, NADH-CoQ oxidoreductase, NADH-CoQ reductase) is an enzyme with systematic name NADH:ubiquinone oxidoreductase. This enzyme catalyses the following chemical reaction:

NADH dehydrogenase is an enzyme that converts nicotinamide adenine dinucleotide (NAD) from its reduced form (NADH) to its oxidized form (NAD+). Members of the NADH dehydrogenase family and analogues are commonly systematically named using the format NADH:acceptor oxidoreductase. The chemical reaction these enzymes catalyze is generally represented with the following equation:

References

  1. van Kleef MA, Duine JA (May 1988). "Bacterial NAD(P)-independent quinate dehydrogenase is a quinoprotein". Archives of Microbiology. 150 (1): 32–6. Bibcode:1988ArMic.150...32V. doi:10.1007/BF00409714. PMID   3044290.
  2. Adachi O, Tanasupawat S, Yoshihara N, Toyama H, Matsushita K (October 2003). "3-dehydroquinate production by oxidative fermentation and further conversion of 3-dehydroquinate to the intermediates in the shikimate pathway". Bioscience, Biotechnology, and Biochemistry. 67 (10): 2124–31. doi:10.1271/bbb.67.2124. PMID   14586099.
  3. Vangnai AS, Toyama H, De-Eknamkul W, Yoshihara N, Adachi O, Matsushita K (December 2004). "Quinate oxidation in Gluconobacter oxydans IFO3244: purification and characterization of quinoprotein quinate dehydrogenase". FEMS Microbiology Letters. 241 (2): 157–62. doi: 10.1016/j.femsle.2004.10.014 . PMID   15598527.