Rhizopus

Last updated

Rhizopus
Structure of Rhizopus spp.-english.JPG
Schematic diagram of Rhizopus spp.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Mucoromycota
Order: Mucorales
Family: Mucoraceae
Genus: Rhizopus
Ehrenb. (1820)
Type species
Rhizopus nigricans
Ehrenb. (1820)
Synonyms [1]

Rhizopus is a genus of common saprophytic fungi on plants and specialized parasites on animals. They are found in a wide variety of organic substances, including "mature fruits and vegetables", [2] jellies, syrups, leather, bread, peanuts, and tobacco. They are multicellular. Some Rhizopus species are opportunistic human pathogens that often cause fatal disease called mucormycosis. This widespread genus includes at least eight species. [3] [4]

Contents

Rhizopus 400x magnification Rhizopus fungus.jpg
Rhizopus 400x magnification

Rhizopus species grow as filamentous, branching hyphae that generally lack cross-walls (i.e., they are coenocytic). They reproduce by forming asexual and sexual spores. In asexual reproduction, sporangiospores are produced inside a spherical structure, the sporangium. Sporangia are supported by a large apophysate columella atop a long stalk, the sporangiophore. Sporangiophores arise among distinctive, root-like rhizoids. In sexual reproduction, a dark zygospore is produced at the point where two compatible mycelia fuse. Upon germination, a zygospore produces colonies that are genetically different from either parent.

Various species, including R. stolonifer, may cause soft rot in sweet potatoes and Narcissus.

Rhizopus helps in nutrient development since this species is grown in soil it ferments the fruits and vegetable in the soil inhibiting the growth and develops certain pathogens that inhibits the growth of toxigenic fungus. [5] In addition to that, there is even a type of Rhizopus (Rhizopus microsporus-fermented soybean tempe) that has proven to reduce colon carcinogenesis in rats by elevating factors of mucins, immunoglobulin A, and organic acids and give protection to piglets from Escherichia coli-infection by inhibiting adhesion to the intestinal membranes. [6]

Phylogeny

The mating analysis has also been found which was comparative that this species structure is flexible in comparison with other species in the same genus. The topology length of the species genome is found to be three times bigger with the species. [7]

Species

See also

Related Research Articles

<span class="mw-page-title-main">Zygomycota</span> Division or phylum of the kingdom Fungi

Zygomycota, or zygote fungi, is a former division or phylum of the kingdom Fungi. The members are now part of two phyla: the Mucoromycota and Zoopagomycota. Approximately 1060 species are known. They are mostly terrestrial in habitat, living in soil or on decaying plant or animal material. Some are parasites of plants, insects, and small animals, while others form symbiotic relationships with plants. Zygomycete hyphae may be coenocytic, forming septa only where gametes are formed or to wall off dead hyphae. Zygomycota is no longer recognised as it was not believed to be truly monophyletic.

<span class="mw-page-title-main">Tempeh</span> Soy product from Indonesia, used as protein source

Tempeh or tempe is a traditional Indonesian food made from fermented soybeans. It is made by a natural culturing and controlled fermentation process that binds soybeans into a cake form. A fungus, Rhizopus oligosporus or Rhizopus oryzae, is used in the fermentation process and is also known as tempeh starter.

<span class="mw-page-title-main">Zygomycosis</span> Medical condition

Zygomycosis is the broadest term to refer to infections caused by bread mold fungi of the zygomycota phylum. However, because zygomycota has been identified as polyphyletic, and is not included in modern fungal classification systems, the diseases that zygomycosis can refer to are better called by their specific names: mucormycosis, phycomycosis and basidiobolomycosis. These rare yet serious and potentially life-threatening fungal infections usually affect the face or oropharyngeal cavity. Zygomycosis type infections are most often caused by common fungi found in soil and decaying vegetation. While most individuals are exposed to the fungi on a regular basis, those with immune disorders (immunocompromised) are more prone to fungal infection. These types of infections are also common after natural disasters, such as tornadoes or earthquakes, where people have open wounds that have become filled with soil or vegetative matter.

<i>Aspergillus</i> Genus of fungi

Aspergillus is a genus consisting of several hundred mold species found in various climates worldwide.

<i>Rhizopus oligosporus</i> Species of fungus

Rhizopus oligosporus is a fungus of the family Mucoraceae and is a widely used starter culture for the production of tempeh at home and industrially. As the mold grows it produces fluffy, white mycelia, binding the beans together to create an edible "cake" of partly catabolized soybeans. The domestication of the microbe is thought to have occurred in Indonesia several centuries ago.

<span class="mw-page-title-main">Mucorales</span> Order of fungi

The Mucorales is the largest and best-studied order of zygomycete fungi. Members of this order are sometimes called pin molds. The term mucormycosis is now preferred for infections caused by molds belonging to the order Mucorales.

<i>Mucor</i> Genus of fungi

Mucor is a microbial genus of approximately 40 species of molds in the family Mucoraceae. Species are commonly found in soil, digestive systems, plant surfaces, some cheeses like Tomme de Savoie, rotten vegetable matter and iron oxide residue in the biosorption process.

Rhizopus arrhizus is a fungus of the family Mucoraceae, characterized by sporangiophores that arise from nodes at the point where the rhizoids are formed and by a hemispherical columella. It is the most common cause of mucormycosis in humans and occasionally infects other animals.

<span class="mw-page-title-main">Oncom</span> Indonesian traditional fermented dish

Oncom is one of the traditional staple foods of the Sundanese cuisine of Indonesia. There are two kinds of oncom: red oncom and black oncom. Oncom is closely related to tempeh; both are foods fermented using mold.

<i>Mucor mucedo</i> Species of fungus

Mucor mucedo, commonly known as the common pinmould, is a fungal plant pathogen and member of the phylum Mucoromycota and the genus Mucor. Commonly found on soil, dung, water, plants and moist foods, Mucor mucedo is a saprotrophic fungus found world-wide with 85 known strains. It is often mistaken for Rhizopus rots on fruits due to similar mould growth shape and colour. Contrastingly, however, Mucor mucedo is found to grow on a wide range of stored grains and plants, including cucumber and tomato. Discovered in Italy in 1729 by P.A. Micheli and later noted by Carl Linnaeus in 1753 in the Species Plantarum, Mucor mucedo was originally classified as Mucor vulgaris by Micheli but later classified synonymous under name Mucor mucedo. The species was redescribed as Ascophora mucedo by H.J. Tode in 1790 but this type resided in a stoloniferous habitat and was later made the type of new genus Rhizopus.

<i>Rhizopus microsporus</i> Species of fungus

Rhizopus microsporus is a fungal plant pathogen infecting maize, sunflower, and rice.

Rhizopus soft rot is a disease of the sweet potato. It is one of the most common to affect the sweet potato, happening during packing and shipping. The disease causes a watery soft rot of the internal portion of the storage root. Strategies to manage the disease include the development of resistant varieties, curing through the use of heat and humidity, and application of decay control products.

<i>Aspergillus sojae</i> Species of fungus

Aspergillus sojae is a species of fungus in the genus Aspergillus.

Cunninghamella bertholletiae is a species of zygomycetous fungi in the order Mucorales. It is found globally, with increased prevalence in Mediterranean and subtropical climates. It typically grows as a saprotroph and is found in a wide variety of substrates, including soil, fruits, vegetables, nuts, crops, and human and animal waste. Although infections are still rare, C. betholletiae is emerging as an opportunistic human pathogen, predominantly in immunocompromised people, leukemia patients, and people with uncontrolled diabetes. Cunninghamella bertholletiae infections are often highly invasive, and can be more difficult to treat with antifungal drugs than infections with other species of the Mucorales, making prompt and accurate recognition and diagnosis of mycoses caused by this fungus an important medical concern.

<i>Rhizopus oryzae</i> Species of fungus

Rhizopus oryzae is a filamentous heterothallic microfungus that occurs as a saprotroph in soil, dung, and rotting vegetation. This species is very similar to Rhizopus stolonifer, but it can be distinguished by its smaller sporangia and air-dispersed sporangiospores. It differs from R. oligosporus and R. microsporus by its larger columellae and sporangiospores. The many strains of R. oryzae produce a wide range of enzymes such as carbohydrate digesting enzymes and polymers along with a number of organic acids, ethanol and esters giving it useful properties within the food industries, bio-diesel production, and pharmaceutical industries. It is also an opportunistic pathogen of humans causing mucormycosis.

<i>Cunninghamella echinulata</i> Species of fungus

Cunninghamella echinulata is a fungal species in the genus Cunninghamella. It is an asexually reproducing fungus and a mesophile, preferring intermediate temperature ranges. C. echinulata is a common air contaminant, and is currently of interest to the biotechnology industry due to its ability to synthesize γ-linolenic acid as well as its capacity to bioconcentrate metals. This species is a soil saprotroph that forms rhizoids, preferring soils enriched in nitrogen, phosphorus and potassium. It has been reported occasionally an agent of mucormycosis following the inhalation of fungal spores. Czapek's agar is a suitable growth medium for the propagation of C. echinulata.

<i>Rhizopus stolonifer</i> Species of fungus

Rhizopus stolonifer is commonly known as black bread mold. It is a member of Zygomycota and considered the most important species in the genus Rhizopus. It is one of the most common fungi in the world and has a global distribution although it is most commonly found in tropical and subtropical regions. It is a common agent of decomposition of stored foods. Like other members of the genus Rhizopus, R. stolonifer grows rapidly, mostly in indoor environments.

<i>Syzygites</i> Genus of fungi

Syzygites is a monotypic genus in Zygomycota. The sole described species is Syzygites megalocarpus, which was the first fungus for which sex was reported and the main homothallic representative in the research that allowed for the classification of fungi as homothallic or heterothallic. It is also the fungus from which the term "zygospore" was coined.

<span class="mw-page-title-main">Mucoromycota</span> Diverse group of molds

Mucoromycota is a division within the kingdom fungi. It includes a diverse group of various molds, including the common bread molds Mucor and Rhizopus. It is a sister phylum to Dikarya.

<i>Actinomucor elegans</i> Species of fungus

Actinomucor elegans was originally described by Schostakowitsch in Siberia in 1898 and reevaluated by Benjamin and Hesseltine in 1957. Commonly found in soil and used for the commercial production of tofu and other products made by soy fermentation. Its major identifying features are its spine-like projections on the sporangiophore and its ribbon-like hyphal structure when found in the tissue of a host.

References

  1. "Rhizopus Ehrenb. 1820". MycoBank. International Mycological Association. Retrieved 2011-02-05.
  2. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008). Dictionary of the Fungi (10th ed.). Wallingford, UK: CABI. p.  599. ISBN   978-0-85199-826-8.
  3. Zheng RY, Chen GQ, Huang H, Liu XY (2007). "A monograph of Rhizopus". Sydowia . 59 (2): 273–372.
  4. Abe A, Asano K, Sone T (2010). "A Molecular Phylogeny-Based Taxonomy of the Genus Rhizopus". Bioscience, Biotechnology, and Biochemistry . 74 (7): 1325–1331. doi: 10.1271/bbb.90718 . PMID   20622457. S2CID   13369408.
  5. Dwi Endrawati, Dwi Endrawati. "Several Functions of Rhizopus sp on Increasing Nutritional Value of Feed Ingredient". June 2017.
  6. Yang, Yongshou (2018). "The effects of tempe fermented with Rhizopus microsporus, Rhizopus oryzae, or Rhizopus stolonifer on the colonic luminal environment in rats". Journal of Functional Foods. 49: 162–167. doi:10.1016/j.jff.2018.08.017. S2CID   91791814.
  7. Gryganskyi, Andrii P; Golan, Jacob; Dolatabadi, Somayeh; Mondo, Stephen; Robb, Sofia; Idnurm, Alexander; Muszewska, Anna; Steczkiewicz, Kamil; Masonjones, Sawyer; Liao, Hui-Ling; Gajdeczka, Michael T; Anike, Felicia; Vuek, Antonina; Anishchenko, Iryna M; Voigt, Kerstin; de Hoog, G Sybren; Smith, Matthew E; Heitman, Joseph; Vilgalys, Rytas; Stajich, Jason E (1 June 2018). "Phylogenetic and Phylogenomic Definition of Rhizopus Species". G3 Genes|Genomes|Genetics. 8 (6): 2007–2018. doi:10.1534/g3.118.200235. PMC   5982828 . PMID   29674435.