Ribonucleoside-triphosphate reductase

Last updated
Ribonucleoside-triphosphate reductase
4coj.jpg
Ribonucleoside-triphosphate reductase dimer, Thermotoga maritima
Identifiers
EC no. 1.17.4.2
CAS no. 9068-66-0
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Ribonucleoside-triphosphate reductase (EC 1.17.4.2, ribonucleotide reductase , 2'-deoxyribonucleoside-triphosphate:oxidized-thioredoxin 2'-oxidoreductase) is an enzyme with systematic name 2'-deoxyribonucleoside-triphosphate:thioredoxin-disulfide 2'-oxidoreductase. [1] [2] [3] This enzyme catalyses the following chemical reaction

2'-deoxyribonucleoside triphosphate + thioredoxin disulfide + H2O ribonucleoside triphosphate + thioredoxin

Ribonucleoside-triphosphate reductase requires a cobamide coenzyme and ATP.

Related Research Articles

<span class="mw-page-title-main">Protein disulfide-isomerase</span> Class of enzymes

Protein disulfide isomerase, or PDI, is an enzyme in the endoplasmic reticulum (ER) in eukaryotes and the periplasm of bacteria that catalyzes the formation and breakage of disulfide bonds between cysteine residues within proteins as they fold. This allows proteins to quickly find the correct arrangement of disulfide bonds in their fully folded state, and therefore the enzyme acts to catalyze protein folding.

<span class="mw-page-title-main">Ribonucleotide</span> Nucleotide containing ribose as its pentose component

In biochemistry, a ribonucleotide is a nucleotide containing ribose as its pentose component. It is considered a molecular precursor of nucleic acids. Nucleotides are the basic building blocks of DNA and RNA. Ribonucleotides themselves are basic monomeric building blocks for RNA. Deoxyribonucleotides, formed by reducing ribonucleotides with the enzyme ribonucleotide reductase (RNR), are essential building blocks for DNA. There are several differences between DNA deoxyribonucleotides and RNA ribonucleotides. Successive nucleotides are linked together via phosphodiester bonds.

<span class="mw-page-title-main">Ribonucleotide reductase</span> Class of enzymes

Ribonucleotide reductase (RNR), also known as ribonucleoside diphosphate reductase (rNDP), is an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides. It catalyzes this formation by removing the 2'-hydroxyl group of the ribose ring of nucleoside diphosphates. This reduction produces deoxyribonucleotides. Deoxyribonucleotides in turn are used in the synthesis of DNA. The reaction catalyzed by RNR is strictly conserved in all living organisms. Furthermore, RNR plays a critical role in regulating the total rate of DNA synthesis so that DNA to cell mass is maintained at a constant ratio during cell division and DNA repair. A somewhat unusual feature of the RNR enzyme is that it catalyzes a reaction that proceeds via a free radical mechanism of action. The substrates for RNR are ADP, GDP, CDP and UDP. dTDP is synthesized by another enzyme from dTMP.

Thioredoxin reductases are enzymes that reduce thioredoxin (Trx). Two classes of thioredoxin reductase have been identified: one class in bacteria and some eukaryotes and one in animals. In bacteria TrxR also catalyzes the reduction of glutaredoxin like proteins known as NrdH. Both classes are flavoproteins which function as homodimers. Each monomer contains a FAD prosthetic group, a NADPH binding domain, and an active site containing a redox-active disulfide bond.

<span class="mw-page-title-main">Thioredoxin</span>

Thioredoxin is a class of small redox proteins known to be present in all organisms. It plays a role in many important biological processes, including redox signaling. In humans, thioredoxins are encoded by TXN and TXN2 genes. Loss-of-function mutation of either of the two human thioredoxin genes is lethal at the four-cell stage of the developing embryo. Although not entirely understood, thioredoxin is linked to medicine through their response to reactive oxygen species (ROS). In plants, thioredoxins regulate a spectrum of critical functions, ranging from photosynthesis to growth, flowering and the development and germination of seeds. Thioredoxins play a role in cell-to-cell communication.

<span class="mw-page-title-main">Vitamin K epoxide reductase</span> Class of enzymes

Vitamin K epoxide reductase (VKOR) is an enzyme that reduces vitamin K after it has been oxidised in the carboxylation of glutamic acid residues in blood coagulation enzymes. VKOR is a member of a large family of predicted enzymes that are present in vertebrates, Drosophila, plants, bacteria and archaea. In some plant and bacterial homologues, the VKOR domain is fused with domains of the thioredoxin family of oxidoreductases.

<span class="mw-page-title-main">Deoxycytidine diphosphate</span> Chemical compound

Deoxycytidine diphosphate is a nucleoside diphosphate. It is related to the common nucleic acid CTP, or cytidine triphosphate, with the -OH (hydroxyl) group on the 2' carbon on the nucleotide's pentose removed, and with one fewer phosphoryl group than CTP.

<span class="mw-page-title-main">Glutaredoxin</span>

Glutaredoxins are small redox enzymes of approximately one hundred amino-acid residues that use glutathione as a cofactor. In humans this oxidation repair enzyme is also known to participate in many cellular functions, including redox signaling and regulation of glucose metabolism. Glutaredoxins are oxidized by substrates, and reduced non-enzymatically by glutathione. In contrast to thioredoxins, which are reduced by thioredoxin reductase, no oxidoreductase exists that specifically reduces glutaredoxins. Instead, glutaredoxins are reduced by the oxidation of glutathione. Reduced glutathione is then regenerated by glutathione reductase. Together these components compose the glutathione system.

Purine metabolism refers to the metabolic pathways to synthesize and break down purines that are present in many organisms.

Betaine reductase is an enzyme that catalyzes the chemical reaction

In enzymology, a glycine reductase (EC 1.21.4.2) is an enzyme that catalyzes the chemical reaction

Adenylyl-sulfate reductase (glutathione) is an enzyme that catalyzes the chemical reaction

Adenylyl-sulfate reductase (thioredoxin) is an enzyme that catalyzes the chemical reaction

In enzymology, a L-methionine (S)-S-oxide reductase (EC 1.8.4.13) is an enzyme that catalyzes the chemical reaction

In enzymology, a phosphoadenylyl-sulfate reductase (thioredoxin) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">GLRX2</span> Protein-coding gene in the species Homo sapiens

Glutaredoxin 2 (GLRX2) is an enzyme that in humans encoded by the GLRX2 gene. GLRX2, also known as GRX2, is a glutaredoxin family protein and a thiol-disulfide oxidoreductase that maintains cellular thiol homeostasis. This gene consists of four exons and three introns, spanned 10 kilobase pairs, and localized to chromosome 1q31.2–31.3.

<span class="mw-page-title-main">Ferredoxin-thioredoxin reductase</span>

Ferredoxin-thioredoxin reductase EC 1.8.7.2, systematic name ferredoxin:thioredoxin disulfide oxidoreductase, is a [4Fe-4S] protein that plays an important role in the ferredoxin/thioredoxin regulatory chain. It catalyzes the following reaction:

Riboflavin reductase (NAD(P)H) (EC 1.5.1.41, NAD(P)H-FMN reductase, Fre) is an enzyme with systematic name riboflavin:NAD(P)+ oxidoreductase. This enzyme catalyses the following chemical reaction

Methionine-S-oxide reductase (EC 1.8.4.5, methyl sulfoxide reductase I and II, acetylmethionine sulfoxide reductase, methionine sulfoxide reductase, L-methionine:oxidized-thioredoxin S-oxidoreductase) is an enzyme with systematic name L-methionine:thioredoxin-disulfide S-oxidoreductase. This enzyme catalyses the following chemical reaction

Peptide-methionine (S)-S-oxide reductase (EC 1.8.4.11, MsrA, methionine sulphoxide reductase A, methionine S-oxide reductase (S-form oxidizing), methionine sulfoxide reductase A, peptide methionine sulfoxide reductase, formerly protein-methionine-S-oxide reductase) is an enzyme with systematic name peptide-L-methionine:thioredoxin-disulfide S-oxidoreductase (L-methionine (S)-S-oxide-forming). This enzyme catalyses the following chemical reaction

References

  1. Blakley RL (May 1965). "Cobamides and ribonucleotide reduction. I. Cobamide stimulation of ribonucleotide reduction in extracts of Lactobacillus leichmannii". The Journal of Biological Chemistry. 240: 2173–80. PMID   14299643.
  2. Goulian M, Beck WS (September 1966). "Purification and properties of cobamide-dependent ribonucleotide reductase from Lactobacillus leichmannii". The Journal of Biological Chemistry. 241 (18): 4233–42. PMID   5924645.
  3. Lammers, M.; Follmann, H. (1983). "The ribonucleotide reductases - a unique group of metalloenzymes essential for cell-proliferation". Struct. Bonding. 54: 27–91. doi:10.1007/bfb0111318.