Sargassum muticum

Last updated

Sargassum muticum
Sargassum muticum stranded.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Stramenopiles
Phylum: Gyrista
Subphylum: Ochrophytina
Class: Phaeophyceae
Order: Fucales
Family: Sargassaceae
Genus: Sargassum
Species:
S. muticum
Binomial name
Sargassum muticum
Detail of the fronds, showing gas-filled floats. Sargassum muticum Yendo Fensholt 1955 Lamiot WimmereuxHautsDeFrance Estran Juillet 2016a8.jpg
Detail of the fronds, showing gas-filled floats.

Sargassum muticum, commonly known as Japanese wireweed [2] or japweed, [3] [4] is a large brown seaweed of the genus Sargassum . It is native to the Western Pacific Ocean from coasts of China, South Korea, Japan, and southern Russia. During the mid-1900s, S. muticum was introduced to the Eastern Pacific Ocean, Atlantic Ocean, and the Mediterranean Sea. In some non-native habitats, it is an invasive species due to its high growth rate and efficient dispersal.

Contents

Description

Sargassum muticum is a brown seaweed, normally brown to yellowish with a length up to 10 m. It is an autotroph that uses energy from sunlight. The photosynthesis is facilitated thanks to aerial vesicles which allow the seaweed to rise to the water's surface.

Sargassum muticum is composed of two distinct parts: a perennial part, which contains the holdfast and one or more short main axes; and an annual part: the secondary axes, which develop on the main axis, whose growth is unlimited and whose size is variable. There are three types of ramifications: laterals with foliaceous expansions caalled fronds, laterals with fronds and aerocysts and laterals with fronds, aerocysts and reproductive organs called receptacles. In winter, only the perennial part persists (5 cm). In summer, the lateral part is in maximum development of 2–3 meters to 10 meters.

Reproduction

The mode of reproduction is both sexual and asexual. S. muticum reaches sexual maturity in the summer when gamete production takes place in receptacles. The species is monoecious, i.e. an individual is capable of producing male and female gametes. Its cycle of development is monogenic (i.e. only one generation is present during its life cycle). At the level of fertilization: male gametes are dispersed in seawater while female gametes remain in the receptacle where fertilization takes place). Development is also done at the receptacle and then once at the stage of seedling, the latter is detached for fixation on a new support and form a new individual. This species can also reproduce asexually, but this has never been observed in temperate environments.

Habitat

Sargassum muticum grows from half-tide to infralittoral areas (to a depth of 10 m. [5] ). It is fixed on solid substrates like rocks, stones, shells. It is highly tolerant towards temperature and salinity variations. The optimal temperature is between 17 and 20 °C but it tolerates 0 and 30 °C. [6]

Global spread, invasiveness, impacts

Global spread

Originally from Japan, it is thought to have gained worldwide distribution through being transported with Japanese oysters ( Crassostrea gigas ). Sargassum muticum was introduced to the Californian coast in the 1940s and in Europe in the 1970s (The species was first found in the British Isles in the Isle of Wight in 1973). Currently, the alga is widespread from Norway to Portugal along Atlantic coasts. Sargassum muticum has a range stretching from Campbell River, British Columbia to Baja in California. [7] In Europe it extends along the coasts of Great Britain, France, Scandinavia, Baltic Sea, Helgoland, Netherlands, Ireland, the Iberian Peninsula and into the Mediterranean from Italy and the Adriatic. It is recorded from Japan, China and Alaska. [5] Recently, some specimens were found on Moroccan coasts. [8] This illustrates its huge tolerance regarding its environment. Herbarium specimens are now stored in the Ulster Museum (BEL catalogue numbers: F11241 - F11242; F11182 - F11185).

Invasiveness and impacts

S. muticum is not invasive in all regions it has spread to. In many areas, populations of S. muticum grew more aggressively early in its introduction, but shifted to an established species that is integrated with the local ecosystem. [6] However in areas where it has been more recently introduced, such as Ireland (introduced in 1995), it grows in large mats and can cause ecological and economic problems. [6] [9]

In some introduced locations, S. muticum has caused a decrease in native algal species. Because of its large size and dense fronds, S.muticum forms a screen within the water column preventing the penetration of light to other seaweeds and algae growing below it. It can also captures the nutrients in disfavor of other species, including phytoplankton. However there are studies that report S.muticum also serves as shelter and protection for fish larvae and crustaceans. [6]

Overproliferation of S.muticum can also have negative economic impacts. It fixes itself to the shells of oysters, creating problems in shellfish farming through increased manual work to eliminate the algae. In addition, it can wrap around the farming structures or get entangled with the propellers of boats, requiring additional maintenance. Like other Sargassum blooms, large mats can detach and wash ashore, where it rots and decreases beach use by people. [6]

Options for removal

There are multiple options to remove S. muticum from areas it has invaded. Mechanical removal—physically removing S. muticum from surfaces it is growing on—can promote spread of the gametes and seedlings and is labor-intensive if done by hand or cost prohibitive by machine. [6] Removal experiments show varying levels of success, from little to moderate impact, in restoring past habitat by removal of S. muticum. One study using mechanical, chemical removal (herbicides), and biological removal (release of predators) concluded all options were ineffective. [10]

Uses

There are some potential uses for Sargassum muticum. [11]

In agriculture, algae are used as sources of nitrate and potash for fertilization. It is also used in aquaculture as feed for juvenile sea cucumbers. [12]

Water treatment

the cell walls of S. muticum contain alginates and fucoidans. The association of both molecules forms a bigger molecule and this one can be a flocculant. This process can be a method to catch organic matter present in sewage. This flocculant, rich in proteins and oligoelements, is easily biodegradable and could be used for fertilizer.

Previous studies have shown that Sargassum muticum is able to carry out the biosorption of heavy metals like cadmium, [13] [14] [15] [16] chlorophenolic compounds, and nickel. [17]

Antifouling

Secondary metabolites produced by marine algae could be an interesting alternative antifouling agent. Previous studies have shown the potential of hydrocarbon and fatty acid compounds in antifouling activities, compounds such as galactolipids and palmitic acid, [18] 1-tetradecene or 1-hexadecene. [19] Moreover, the peak production of antifouling compounds is during the spring.

Source of pharmaceutical compounds

Antioxidant compounds: Sargassum muticum is rich in antioxidant compounds such as phenolic [20] compounds (cathechins, phlorotannins, quercetins), pigments (fucoxanthin) and vitamins(vitamin C, K, E in the form of alpha-tocophérol and gamma-tocopherol). Applications are possible in pharmaceuticals, cosmetics and health fields, thanks to the antioxidant activities of these molecules.

Related Research Articles

<i>Chondrus crispus</i> Species of edible alga

Chondrus crispus—commonly called Irish moss or carrageenan moss —is a species of red algae which grows abundantly along the rocky parts of the Atlantic coasts of Europe and North America. In its fresh condition it is soft and cartilaginous, varying in color from a greenish-yellow, through red, to a dark purple or purplish-brown. The principal constituent is a mucilaginous body, made of the polysaccharide carrageenan, which constitutes 55% of its dry weight. The organism also consists of nearly 10% dry weight protein and about 15% dry weight mineral matter, and is rich in iodine and sulfur. When softened in water it has a sea-like odour. Because of the abundant cell wall polysaccharides, it will form a jelly when boiled, containing from 20 to 100 times its weight of water.

<i>Fucus vesiculosus</i> Species of Phaeophyceae

Fucus vesiculosus, known by the common names bladderwrack, black tang, rockweed, sea grapes, bladder fucus, sea oak, cut weed, dyers fucus, red fucus and rock wrack, is a seaweed found on the coasts of the North Sea, the western Baltic Sea and the Atlantic and Pacific Oceans. It was the original source of iodine, discovered in 1811, and was used extensively to treat goitre, a swelling of the thyroid gland related to iodine deficiency.

<span class="mw-page-title-main">Brown algae</span> Large group of multicellular algae, comprising the class Phaeophyceae

Brown algae are a large group of multicellular algae comprising the class Phaeophyceae. They include many seaweeds located in colder waters of the Northern Hemisphere. Brown algae are the major seaweeds of the temperate and polar regions. Many brown algae, such as members of the order Fucales, commonly grow along rocky seashores. Most brown algae live in marine environments, where they play an important role both as food and as a potential habitat. For instance, Macrocystis, a kelp of the order Laminariales, may reach 60 m (200 ft) in length and forms prominent underwater kelp forests that contain a high level of biodiversity. Another example is Sargassum, which creates unique floating mats of seaweed in the tropical waters of the Sargasso Sea that serve as the habitats for many species. Some members of the class, such as kelps, are used by humans as food.

<i>Sargassum</i> Genus of brown algae

Sargassum is a genus of brown macroalgae (seaweed) in the order Fucales of the Phaeophyceae class. Numerous species are distributed throughout the temperate and tropical oceans of the world, where they generally inhabit shallow water and coral reefs, and the genus is widely known for its planktonic (free-floating) species. Most species within the class Phaeophyceae are predominantly cold-water organisms that benefit from nutrients upwelling, but the genus Sargassum appears to be an exception. Any number of the normally benthic species may take on a planktonic, often pelagic existence after being removed from reefs during rough weather. Two species have become holopelagic—reproducing vegetatively and never attaching to the seafloor during their lifecycles. The Atlantic Ocean's Sargasso Sea was named after the algae, as it hosts a large amount of Sargassum.

<i>Caulerpa taxifolia</i> Species of alga

Caulerpa taxifolia is a species of green seaweed, an alga of the genus Caulerpa, native to tropical waters of the Pacific Ocean, Indian Ocean, and Caribbean Sea. The species name taxifolia arises from the resemblance of its leaf-like fronds to those of the yew (Taxus).

<i>Caulerpa</i> Genus of seaweeds

Caulerpa is a genus of seaweeds in the family Caulerpaceae. They are unusual because they consist of only one cell with many nuclei, making them among the biggest single cells in the world.

<i>Ascophyllum</i> Species of seaweed

Ascophyllum nodosum is a large, common cold water seaweed or brown alga (Phaeophyceae) in the family Fucaceae. Its common names include knotted wrack, egg wrack, feamainn bhuí, rockweed, knotted kelp and Norwegian kelp. It grows only in the northern Atlantic Ocean, along the north-western coast of Europe including east Greenland and the north-eastern coast of North America. Its range further south of these latitudes is limited by warmer ocean waters. It dominates the intertidal zone. Ascophyllum nodosum has been used numerous times in scientific research and has even been found to benefit humans through consumption.

<i>Fucus serratus</i> Species of Phaeophyceae

Fucus serratus is a seaweed of the north Atlantic Ocean, known as toothed wrack, serrated wrack, or saw rack.

<i>Pelvetia</i> Genus of seaweeds

Pelvetia canaliculata, the channelled wrack, is a very common brown alga (Phaeophyceae) found on the rocks of the upper shores of Europe. It is the only species remaining in the monotypic genus Pelvetia. In 1999, the other members of this genus were reclassified as Silvetia due to differences of oogonium structure and of nucleic acid sequences of the rDNA.

<i>Mastocarpus stellatus</i> Species of edible alga

Mastocarpus stellatus, commonly known as carrageenan moss or false Irish moss, is a species in the Rhodophyceae division, a red algae seaweed division, and the Phyllophoracea family. M. stellatus is closely related to Irish Moss. It grows in the intertidal zone. It is most collected in North Atlantic regions such as Ireland and Scotland, together with Irish moss, dried, and sold for cooking and as the basis for a drink reputed to ward off colds and flu. Marine biologists have completed studies on the medicinal reputation of M. stellatus to discover the full potential of its pharmaceutical benefits. Additionally, marine biologists have conducted research on its potential to serve as an alternative to plastic. The application of M. stellatus in these different industries is correlated with the seaweed's adaptations which developed in response to the environmental stressors present around its location on the rocky intertidal.

<i>Turbinaria ornata</i> Species of seaweed

Turbinaria ornata is a tropical brown algae of the order Fucales native to coral reef ecosystems of the South Pacific. Turbinaria ornata is more commonly referred to as crowded sea bells in the US and crowned sea bells worldwide. It can quickly colonize these ecosystems due in part to its method of dispersing by detaching older and more buoyant fronds that travel on surface currents, sometimes in large rafts of many individual thalli, or fronds. Some scientists are investigating whether the increase in density of seaweeds, and a decrease in living coral density, on coral reef ecosystems indicates a change in the health of the reef, focusing studies on this particular species of brown alga.

Wireweed may refer to several organisms, including:

<i>Bryopsis</i> Genus of algae

Bryopsis, often referred to a hair algae, is a genus of marine green algae in the family Bryopsidaceae. Species in the genus are macroscopic, siphonous marine green algae that are made up of units of single tubular filaments. They can form dense tufts up to 40 cm in height. Each cell is made of up an erect thallus that is often branched into pinnules. Approximately 60 species have been identified in this genus since its initial discovery in 1809. The ecological success of Bryopsis has also been attributed to its associations with endophytic bacteria that reside in the cytoplasm of their cells.

<i>Turbinaria</i> (alga) Genus of seaweeds

Turbinaria is a genus of brown algae (Phaeophyceae) found primarily in tropical marine waters. It generally grows on rocky substrates. In tropical Turbinaria species that are often preferentially consumed by herbivorous fishes and echinoids, there is a relatively low level of phenolics and tannins.

<i>Ecklonia cava</i> Species of seaweed

Ecklonia cava, also called paddle weed, kajime, noro-kajime, or gamtae (Korean: 감태), is an edible marine brown alga species found in the ocean off Japan and Korea.

<i>Osmundea pinnatifida</i> Species of alga

Osmundea pinnatifida is a species of red alga known by the common name pepper dulse.

<i>Fucus distichus</i> Species of alga

Fucus distichus or rockweed is a species of brown alga in the family Fucaceae to be found in the intertidal zones of rocky seashores in the Northern Hemisphere, mostly in rock pools.

<i>Codium fragile</i> Species of alga

Codium fragile, known commonly as green sea fingers, dead man's fingers, felty fingers, forked felt-alga, stag seaweed, sponge seaweed, green sponge, green fleece, sea staghorn, and oyster thief, is a species of seaweed in the family Codiaceae. It originates in the Pacific Ocean near Japan and has become an invasive species on the coasts of the Northern Atlantic Ocean.

<i>Dictyota dichotoma</i> Species of brown algae

Dictyota dichotoma is a species of Brown algae found in the temperate western and eastern Atlantic Ocean, the Mediterranean Sea, the Black Sea, the Red Sea and the western Indian Ocean.

References

  1. Fensholt D.E. (1955). "An emendation of the genus Cystophyllum (Fucales)". American Journal of Botany 42: 305–322, 51 figs.
  2. "Sargassum muticum - Japanese wireweed". Flanders Marine Institute . Retrieved 15 March 2023.
  3. David Chapman (2008). Exploring the Cornish Coast. Penzance: Alison Hodge. p. 28. ISBN   9780906720561.
  4. "Overview: Japweed". Oxford Reference . Retrieved 15 March 2023.
  5. 1 2 Thomas D. N. (2002). Seaweeds. The Natural History Museum, London.
  6. 1 2 3 4 5 6 "Sargassum muticum". Marine Invasions Lab. Retrieved 2024-10-07.
  7. Abbott I. A. & Hollenberg G. J. (1976). Marine Algae of California. Stanford University Press, California.
  8. "Sargassum muticum (Yendo) Fensholt (Fucales, Phaeophyta) in Morocco, an invasive marine species new to the Atlantic coast of Africa" (PDF).
  9. "Seaweed.ie :: Sargassum muticum". www.seaweed.ie. Retrieved 2024-10-07.
  10. Critchley, A. T.; Farnham, W. F.; Morrell, S. L. (1986-01-01). "An account of the attempted control of an introduced marine alga, Sargassum muticum, in Southern England". Biological Conservation. 35 (4): 313–332. doi:10.1016/0006-3207(86)90092-3. ISSN   0006-3207.
  11. Milledge, John J.; Nielsen, Birthe V.; Bailey, David (2015-10-05). "High-value products from macroalgae: the potential uses of the invasive brown seaweed, Sargassum muticum". Reviews in Environmental Science and Bio/Technology. 15 (1): 67–88. doi:10.1007/s11157-015-9381-7. ISSN   1569-1705. S2CID   83724341.
  12. James, Baskar D. "Captive breeding of the sea cucumber, Holothuria scabra, from India". Food and Agriculture Organization of the United Nations. Retrieved 25 October 2019.
  13. "Physicochemical studies of Cadmium (II) biosorption by the invasive alga in Europe Sargassum muticum" (PDF).
  14. Lodeiro, P.; Herrero, R.; Sastre de Vicente, M. E. (2006-10-11). "Batch desorption studies and multiple sorption–regeneration cycles in a fixed-bed column for Cd(II) elimination by protonated Sargassum muticum". Journal of Hazardous Materials. 137 (3): 1649–1655. doi:10.1016/j.jhazmat.2006.05.003. PMID   16759799.
  15. Lodeiro, P.; Herrero, R.; Vicente, M. E. Sastre de (2006-09-01). "The use of protonated Sargassum muticum as biosorbent for cadmium removal in a fixed-bed column". Journal of Hazardous Materials. 137 (1): 244–253. doi:10.1016/j.jhazmat.2006.01.061. PMID   16519998.
  16. Davis, Thomas A; Volesky, Bohumil; Mucci, Alfonso (2003-11-01). "A review of the biochemistry of heavy metal biosorption by brown algae". Water Research. 37 (18): 4311–4330. Bibcode:2003WatRe..37.4311D. doi:10.1016/S0043-1354(03)00293-8. PMID   14511701.
  17. Bermúdez, Yeslié González; Rico, Ivan L. Rodríguez; Bermúdez, Omar Gutiérrez; Guibal, Eric (2011-01-01). "Nickel biosorption using Gracilaria caudata and Sargassum muticum". Chemical Engineering Journal. 166 (1): 122–131. doi:10.1016/j.cej.2010.10.038.
  18. Bazes, Alexandra; Silkina, Alla; Douzenel, Philippe; Faÿ, Fabienne; Kervarec, Nelly; Morin, Danièle; Berge, Jean-Pascal; Bourgougnon, Nathalie (2008-10-03). "Investigation of the antifouling constituents from the brown alga Sargassum muticum (Yendo) Fensholt" (PDF). Journal of Applied Phycology. 21 (4): 395–403. doi:10.1007/s10811-008-9382-9. ISSN   0921-8971. S2CID   3825682.
  19. Plouguerné, Erwan; Ioannou, Efstathia; Georgantea, Panagiota; Vagias, Constantinos; Roussis, Vassilios; Hellio, Claire; Kraffe, Edouard; Stiger-Pouvreau, Valérie (2009-05-26). "Anti-microfouling Activity of Lipidic Metabolites from the Invasive Brown Alga Sargassum muticum (Yendo) Fensholt". Marine Biotechnology. 12 (1): 52–61. doi:10.1007/s10126-009-9199-9. ISSN   1436-2228. PMID   19468792. S2CID   37438657.
  20. Namvar, Farideh; Mohamad, Rosfarizan; Baharara, Javad; Zafar-Balanejad, Saeedeh; Fargahi, Fahimeh; Rahman, Heshu Sulaiman (2013-09-03). "Antioxidant, Antiproliferative, and Antiangiogenesis Effects of Polyphenol-Rich Seaweed (Sargassum muticum)". BioMed Research International. 2013: 604787. doi: 10.1155/2013/604787 . ISSN   2314-6133. PMC   3776361 . PMID   24078922.