Scheuermann's disease

Last updated
Scheuermann's disease
Other namesScheuermann's kyphosis, Calvé disease, idiopathic juvenile kyphosis of the spine
ScheuermannDiseaseT6to10.png
Scheuermann's disease on lateral Xray of the T spine
Pronunciation
Specialty Orthopaedics, Rheumatology Osteopathy, Chiropractic
Symptoms Curve of upper back, chronic pain
Complications Chronic pain, lower than average bone density hence greater risk for osteoporosis and osteopenia [1]
Usual onset Adolescence
DurationLifelong
CausesUnknown, Genetic factors
Diagnostic method X-ray, MRI
Treatment Physical therapy, avoiding excessive weight bearing exercises, back brace, surgery
Prognosis Self-limiting
PrevalenceIt has a prevalence of 0.4–8.3% in the population with a higher incidence in Males
A pre-operative image of a 22-year-old male with a very extreme case of Scheuermann's disease Scheuermanns diseasebl.jpg
A pre-operative image of a 22-year-old male with a very extreme case of Scheuermann's disease

Scheuermann's disease is a skeletal disorder. [2] It describes a condition where the vertebrae grow unevenly with respect to the sagittal plane; that is, the posterior angle is often greater than the anterior. This uneven growth results in the signature "wedging" shape of the vertebrae, causing kyphosis. It is named after Danish surgeon Holger Scheuermann. [3] [4] [5]

Contents

Signs and symptoms

Scheuermann's disease is considered to be a form of osteochondrosis of the spine. It typically develops during adolescence and presents a significantly worse deformity than postural kyphosis. Patients with Scheuermann’s kyphosis cannot consciously correct their posture. The apex of their curve, located in the thoracic vertebrae, is quite rigid.[ citation needed ]

Scheuermann's disease is notorious for causing lower and mid-level back and neck pain, which can be severe and disabling. The individual may feel pain at the apex of the curve, which is aggravated by physical activity and by periods of standing or sitting; this can have a significantly detrimental effect to their lives as their level of activity is curbed by their disability. The individual may feel isolated or uneasy amongst their peers if they are children, depending on the level of deformity.[ citation needed ]

In addition to the pain associated with Scheuermann's disease, many individuals with the disorder have loss of vertebral height, and depending on where the apex of the curve is, may have a visual 'hunchback' or 'roundback'. It has been reported that curves in the lower thoracic region cause more pain, whereas curves in the upper region present a more visual deformity. Nevertheless, it is typically pain or cosmetic reasons that prompt sufferers to seek help for their condition. In studies, kyphosis is better characterized for the thoracic spine than for the lumbar spine. [6] [7]

The seventh and tenth thoracic vertebrae are most commonly affected. It causes backache and spinal curvature. In very serious cases it may cause internal problems and spinal cord damage. The curvature of the back decreases height, thus putting pressure on internal organs, wearing them out more quickly than the natural aging process; surgical procedures are almost always recommended in this case.[ citation needed ]

Pain: Scheuermann’s patients had a higher risk for back pain and disabilities during activities of daily living than controls. However, the degree of thoracic kyphosis among Scheuermann’s patients is not necessarily correlated to back pain, quality of life, or general health. [8]

Associated conditions

Many with Scheuermann's disease often have an excessive lordotic curve in the lumbar spine; this is the body's natural way to compensate for the kyphotic curve above. Many with Scheuermann's disease have very large lung capacities and individuals often have broad, barrel chests. Most people have forced vital capacity (FVC) scores above average. It has been proposed that this is the body's natural way to compensate for a loss of breathing depth.[ citation needed ]

Often patients have tight hamstrings, which, again, is related to the body compensating for excessive spinal curvature, though this is also debated (for example, some suggest the tightness of ligament is the initial cause of the growth abnormality). In addition to the common lordosis, it has been suggested that between 20–30% of patients with Scheuermann's Disease also have scoliosis, though most cases are negligible. In more serious cases, however, the combination is classified as a separate condition known as kyphoscoliosis.[ citation needed ]

Patients with Scheurmann's disease are prone to having a lower than average bone density. They are hence at a statistical greater long term risk for osteopenia and osteoporosis, the reason for this is unknown. [1]

Causes

The cause is not currently known, and the condition appears to be multifactorial. [9] Several candidate genes (such as FBN1, which has been associated with Marfan) have been proposed and excluded. It has also been proposed that there may be an underlying, yet elusive, neurological disorder that plays a role in the eventual development of the disease. [10]

Diagnosis

A 20-year-old male with Scheuermann's disease, showing various measurement of kyphotic/lordotic degrees and their supplementary angles. Notice the signature 'wedging' shape of the four vertebrae in the lower thoracic area. The other vertebral bodies are otherwise normal. The measured kyphosis for this patient is ~70deg. Scheuermanns70.jpg
A 20-year-old male with Scheuermann's disease, showing various measurement of kyphotic/lordotic degrees and their supplementary angles. Notice the signature 'wedging' shape of the four vertebrae in the lower thoracic area. The other vertebral bodies are otherwise normal. The measured kyphosis for this patient is ~70°.
Scheuermann's disease on lateral CT of the T spine ScheuermannDiseaseT6to10CT.png
Scheuermann's disease on lateral CT of the T spine

Diagnosis is typically by medical imaging. The degree of kyphosis can be measured by Cobb's angle and sagittal balance.[ citation needed ]

Treatment

Conservative

Scheuermann's disease is most prominent during bone development. Once the patient is fully grown, the bones will maintain the deformity. There are many treatment methods and options available that aim to correct the kyphosis while the spine is still growing, and especially aim to prevent it from worsening.[ citation needed ] In some cases, the deformity will continue to progress during adulthood. [11]

While there is currently no explanation for what causes Scheuermann's disease, there are ways to treat it. For less extreme cases, manual medicine, physical therapy and/or back braces can help reverse or stop the kyphosis before it does become severe.[ citation needed ] Because the disease is often benign, and because back surgery includes many risks, surgery is usually considered a last resort for patients. In severe or extreme cases, patients may be treated through an extensive surgical procedure in an effort to prevent the disease from worsening or harming the body.[ citation needed ]

In Germany, a standard treatment for both Scheuermann's disease and lumbar kyphosis is the Schroth method, a system of specialized physical therapy for scoliosis and related spinal deformities. [12] The method has been shown to reduce pain and decrease kyphotic angle significantly during an inpatient treatment program. [13] [14]

Bracing can be utilized to help prevent progression and in some cases reduce the hyperkyphosis Cobb angle. Conservative treatment of Scheuermann's hyperkyphosis in international literature is generally regarded as an effective treatment approach. Physiotherapy and bracing are the first-line treatments for this condition. [15]

Braces such as the Scolibrace (kyphobrace) and Kyphologic brace systems have been shown to be effective in the treatment of Scheuermann's [15]

Surgery

A post-operative X-ray of a 22-year-old male with Scheuermann's disease. After a 13-level spinal fusion to correct the excessive curvature, the person now presents a normal degree of kyphosis, with a minimal loss of flexibility. CorrectedKyphosis.jpg
A post-operative X-ray of a 22-year-old male with Scheuermann's disease. After a 13-level spinal fusion to correct the excessive curvature, the person now presents a normal degree of kyphosis, with a minimal loss of flexibility.

The skeletal deformity caused by Scheuermann's disease can be corrected or partially corrected with surgical procedures, almost all of which include multi-level spinal fusion and hardware instrumentation, i.e., rods, pedicle screws, etc. While many patients are typically interested in getting surgery for their correction, it is important to realize the surgery aims to reduce pain, and not cosmetic defect. As always, surgical intervention should be used as a last resort once conservative treatment fails or the patient's health is in imminent danger as any surgical procedure is not without risk. However, the chances of complication are relatively low, and the surgeries are often successful.[ citation needed ]

There are two primary surgical techniques to correct kyphosis: posterior-only fusion and anterior/posterior fusion. While debate lingers over which surgical approach is optimal, several studies published since 2018 suggest treatment trends are favoring posterior-only fusion. [16] [17] [18]

The classic surgical procedure entails entering two titanium rods, each roughly 1.5 feet (0.46 m) long (depending on the size of the kyphosis) into the back on either side of the spine. Eight titanium screws and hardware are drilled through the bone to secure the rods onto either side of the spine. On the internal-facing side of the spine, ligaments (which can be too short, pulling the spine into its abnormal shape) must be surgically cut or released, not only stopping part of the cause of the kyphosis, but also allowing the titanium rods to pull the spine into a more natural position. The damaged discs between the troubled vertebrae (wedged vertebrae) are normally removed and replaced with bone grafting from the hip or other parts of the vertebrae, which once healed or "fused" will solidify. The titanium instrumentation holds everything in place during healing. The patient can expect to remain in hospital for minimum of a week, and possibly longer. They may then be required to wear a brace for several months more to ensure the spine heals appropriately. The titanium instrumentation may stay in the body permanently, or be removed years later. Patients who have undergone such surgery may need physical therapy to manage pain and mobility. Recovery can be prolonged: typically patients are not allowed to lift anything above 5–10 pounds (2.3–4.5 kg) for 6 months to 1 year, and many are out of work for 3 to 6 months. However, once the fusion is solidified, most patients can return to their usual lifestyle within 1–2 years.[ citation needed ]

Prognosis

Spinal fusion for kyphosis and scoliosis is an extremely invasive surgery. The risk of complications is estimated to be about 10%. Possible complications may be inflammation of the soft tissue or deep inflammatory processes, breathing impairments, bleeding and nerve injuries, or infection. As early as five years after surgery around 5% require reoperation and long-term issues remain unclear. [19] [20] Taking into account that some of the symptoms of the spinal deformity cannot be changed by surgical intervention, surgery remains a cosmetic indication, [19] [21] though the cosmetic effects of surgery are not necessarily stable. [19]

Notable cases

See also

Related Research Articles

<span class="mw-page-title-main">Scoliosis</span> Left-right asymmetry of the spines curvature

Scoliosis is a condition in which a person's spine has an irregular curve in the coronal plane. The curve is usually S- or C-shaped over three dimensions. In some, the degree of curve is stable, while in others, it increases over time. Mild scoliosis does not typically cause problems, but more severe cases can affect breathing and movement. Pain is usually present in adults, and can worsen with age. As the condition progresses, it may alter a person's life, and hence can also be considered a disability. It can be compared to kyphosis and lordosis, other abnormal curvatures of the spine which are in the sagittal plane (front-back) rather than the coronal (left-right).

<span class="mw-page-title-main">Pott's disease</span> Tuberculosis of the spine

Pott's disease, or Pott disease, named for British surgeon Percivall Pott who first described the symptoms in 1799, is tuberculosis of the spine, usually due to haematogenous spread from other sites, often the lungs. The lower thoracic and upper lumbar vertebrae areas of the spine are most often affected.

<span class="mw-page-title-main">Kyphosis</span> Excessive convex curvature of the lower and middle spine

Kyphosis is an abnormally excessive convex curvature of the spine as it occurs in the thoracic and sacral regions. Abnormal inward concave lordotic curving of the cervical and lumbar regions of the spine is called lordosis.

<span class="mw-page-title-main">Lumbar spinal stenosis</span> Narrowing of the lower spinal canal

Lumbar spinal stenosis (LSS) is a medical condition in which the spinal canal narrows and compresses the nerves and blood vessels at the level of the lumbar vertebrae. Spinal stenosis may also affect the cervical or thoracic region, in which case it is known as cervical spinal stenosis or thoracic spinal stenosis. Lumbar spinal stenosis can cause pain in the low back or buttocks, abnormal sensations, and the absence of sensation (numbness) in the legs, thighs, feet, or buttocks, or loss of bladder and bowel control.

<span class="mw-page-title-main">Laminectomy</span> Surgical removal of a lamina

A laminectomy is a surgical procedure that removes a portion of a vertebra called the lamina, which is the roof of the spinal canal. It is a major spine operation with residual scar tissue and may result in postlaminectomy syndrome. Depending on the problem, more conservative treatments may be viable.

<span class="mw-page-title-main">Spondylosis</span> Degeneration of the vertebral column

Spondylosis is the degeneration of the vertebral column from any cause. In the more narrow sense it refers to spinal osteoarthritis, the age-related degeneration of the spinal column, which is the most common cause of spondylosis. The degenerative process in osteoarthritis chiefly affects the vertebral bodies, the neural foramina and the facet joints. If severe, it may cause pressure on the spinal cord or nerve roots with subsequent sensory or motor disturbances, such as pain, paresthesia, imbalance, and muscle weakness in the limbs.

<span class="mw-page-title-main">Lordosis</span> Abnormal inward curvature of the lower spine

Lordosis is historically defined as an abnormal inward curvature of the lumbar spine. However, the terms lordosis and lordotic are also used to refer to the normal inward curvature of the lumbar and cervical regions of the human spine. Similarly, kyphosis historically refers to abnormal convex curvature of the spine. The normal outward (convex) curvature in the thoracic and sacral regions is also termed kyphosis or kyphotic. The term comes from Greek lordos 'bent backward'.

<span class="mw-page-title-main">Degenerative disc disease</span> Loss of function in the spines intervertebral discs

Degenerative disc disease (DDD) is a medical condition typically brought on by the aging process in which there are anatomic changes and possibly a loss of function of one or more intervertebral discs of the spine. DDD can take place with or without symptoms, but is typically identified once symptoms arise. The root cause is thought to be loss of soluble proteins within the fluid contained in the disc with resultant reduction of the oncotic pressure, which in turn causes loss of fluid volume. Normal downward forces cause the affected disc to lose height, and the distance between vertebrae is reduced. The anulus fibrosus, the tough outer layers of a disc, also weakens. This loss of height causes laxity of the longitudinal ligaments, which may allow anterior, posterior, or lateral shifting of the vertebral bodies, causing facet joint malalignment and arthritis; scoliosis; cervical hyperlordosis; thoracic hyperkyphosis; lumbar hyperlordosis; narrowing of the space available for the spinal tract within the vertebra ; or narrowing of the space through which a spinal nerve exits with resultant inflammation and impingement of a spinal nerve, causing a radiculopathy.

<span class="mw-page-title-main">Klippel–Feil syndrome</span> Congenital condition characterised by fusion of two or more vertebrae in the neck

Klippel–Feil syndrome (KFS), also known as cervical vertebral fusion syndrome, is a rare congenital condition characterized by the abnormal fusion of any two of the seven bones in the neck. It can result in a limited ability to move the neck and shortness of the neck, resulting in the appearance of a low hairline. Most people only have one or two of those symptoms so it may not be noticeable without medical imaging.

<span class="mw-page-title-main">Harrington rod</span> Surgical implant typically used to stabilise scoliosis

The Harrington rod is a stainless steel surgical device. Historically, this rod was implanted along the spinal column to treat, among other conditions, a lateral or coronal-plane curvature of the spine, or scoliosis. Up to one million people had Harrington rods implanted for scoliosis between the early 1960s and the late 1990s.

<span class="mw-page-title-main">Back brace</span> Corrective medical device worn around a patients back

A back brace is a device designed to limit the motion of the spine in cases of bone fracture or in post-operative spinal fusiona, as well as a preventative measure against some progressive conditions or to correct patient posture.

<span class="mw-page-title-main">Spinal fusion</span> Immobilization or ankylosis of two or more vertebrae by fusion of the vertebral bodies

Spinal fusion, also called spondylodesis or spondylosyndesis, is a surgery performed by orthopaedic surgeons or neurosurgeons that joins two or more vertebrae. This procedure can be performed at any level in the spine and prevents any movement between the fused vertebrae. There are many types of spinal fusion and each technique involves using bone grafting—either from the patient (autograft), donor (allograft), or artificial bone substitutes—to help the bones heal together. Additional hardware is often used to hold the bones in place while the graft fuses the two vertebrae together. The placement of hardware can be guided by fluoroscopy, navigation systems, or robotics.

<span class="mw-page-title-main">Kyphoscoliosis</span> Abnormal spinal curvature in the coronal and sagittal planes

Kyphoscoliosis describes an abnormal curvature of the spine in both the coronal and sagittal planes. It is a combination of kyphosis and scoliosis. This musculoskeletal disorder often leads to other issues in patients, such as under-ventilation of lungs, pulmonary hypertension, difficulty in performing day-to-day activities, and psychological issues emanating from anxiety about acceptance among peers, especially in young patients. It can also be seen in syringomyelia, Friedreich's ataxia, spina bifida, kyphoscoliotic Ehlers–Danlos syndrome (kEDS), and Duchenne muscular dystrophy due to asymmetric weakening of the paraspinal muscles.

<span class="mw-page-title-main">Gibbus deformity</span> Structural curvature in the human body

Gibbus deformity is a form of structural kyphosis typically found in the upper lumbar and lower thoracic vertebrae, where one or more adjacent vertebrae become wedged. Gibbus deformity most often develops in young children as a result of spinal tuberculosis and is the result of collapse of vertebral bodies. This can in turn lead to spinal cord compression causing paraplegia.

<span class="mw-page-title-main">Spinal disease</span> Disease involving the vertebral column

Spinal disease refers to a condition impairing the backbone. These include various diseases of the back or spine ("dorso-"), such as kyphosis. Dorsalgia refers to back pain. Some other spinal diseases include spinal muscular atrophy, ankylosing spondylitis, scoliosis, lumbar spinal stenosis, spina bifida, spinal tumors, osteoporosis and cauda equina syndrome.

<span class="mw-page-title-main">Spinal stenosis</span> Disease of the bony spine that results in narrowing of the spinal canal

Spinal stenosis is an abnormal narrowing of the spinal canal or neural foramen that results in pressure on the spinal cord or nerve roots. Symptoms may include pain, numbness, or weakness in the arms or legs. Symptoms are typically gradual in onset and improve with leaning forward. Severe symptoms may include loss of bladder control, loss of bowel control, or sexual dysfunction.

<span class="mw-page-title-main">Vertebral column</span> Bony structure found in vertebrates

The vertebral column, also known as the spinal column, spine or backbone, is the core part of the axial skeleton in vertebrate animals. The vertebral column is the defining and eponymous characteristic of the vertebrate endoskeleton, where the notochord found in all chordates has been replaced by a segmented series of mineralized irregular bones called vertebrae, separated by fibrocartilaginous intervertebral discs. The dorsal portion of the vertebral column houses the spinal canal, an elongated cavity formed by alignment of the vertebral neural arches that encloses and protects the spinal cord, with spinal nerves exiting via the intervertebral foramina to innervate each body segments.

The management of scoliosis is complex and is determined primarily by the type of scoliosis encountered: syndromic, congenital, neuromuscular, or idiopathic. Treatment options for idiopathic scoliosis are determined in part by the severity of the curvature and skeletal maturity, which together help predict the likelihood of progression. Non-surgical treatment should be pro-active with intervention performed early as "Best results were obtained in 10-25 degrees scoliosis which is a good indication to start therapy before more structural changes within the spine establish." Treatment options have historically been categorized under the following types:

  1. Observation
  2. Bracing
  3. Specialized physical therapy
  4. Surgery

Spinal posture is the position of the spine in the human body. It is debated what the optimal spinal posture is, and whether poor spinal posture causes lower back pain. Good spinal posture may help develop balance, strength and flexibility.

<span class="mw-page-title-main">Halo-gravity traction device</span> Device used to treat spinal deformities

Halo-gravity traction (HGT) is a type of traction device utilized to treat spinal deformities such as scoliosis, congenital spine deformities, cervical instability, basilar invagination, and kyphosis. It is used prior to surgical treatment to reduce the difficulty of the following surgery and the need for a more dangerous surgery. The device works by applying weight to the spine in order to stretch and straighten it. Patients are capable of remaining somewhat active using a wheelchair or a walker whilst undergoing treatment. Most of the research suggests that HGT is a safe treatment, and it can even improve patients' nutrition or respiratory functioning. However, some patients may experience side effects such as headaches or neurological complications. The halo device itself was invented in the 1960s by doctors working at the Rancho Los Amigos hospital. Their work was published in a paper entitled "The Halo: A Spinal Skeletal Traction Fixation Device." The clinician Pierre Stagnara utilized the device to develop Halo-Gravity traction.

References

  1. 1 2 Chen Y, Bloomfield A, Nasir A (10 March 2017). "Scheuermann's disease". Statistics Canada. Retrieved 17 January 2021.
  2. Bell, Angela. "What to know about Scheuermann's disease". medicalnewstoday.com. Retrieved 20 November 2024.
  3. Scheuermann's disease at Who Named It?
  4. Scheuermann HW (1920). "Kyphosis dorsalis juvenilis". Ugeskrift for Læger (in Danish). 82: 385–93. Republished as: Scheuermann HW (October 1977). "The classic: kyphosis dorsalis juvenilis". Clinical Orthopaedics and Related Research. 128 (128): 5–7. PMID   340099.
  5. "Scheuermann's disease". Medcyclopaedia. GE. Archived from the original on 24 May 2012.
  6. Summers BN, Singh JP, Manns RA (May 2008). "The radiological reporting of lumbar Scheuermann's disease: an unnecessary source of confusion amongst clinicians and patients". The British Journal of Radiology. 81 (965): 383–385. doi:10.1259/bjr/69495299. PMID   18440942.
  7. Blumenthal SL, Roach J, Herring JA (November 1987). "Lumbar Scheuermann's. A clinical series and classification". Spine. 12 (9): 929–932. doi:10.1097/00007632-198711000-00015. PMID   3441839. S2CID   42294338.
  8. Ristolainen L, Kettunen JA, Heliövaara M, Kujala UM, Heinonen A, Schlenzka D (May 2012). "Untreated Scheuermann's disease: a 37-year follow-up study". European Spine Journal. 21 (5): 819–824. doi:10.1007/s00586-011-2075-0. PMC   3337904 . PMID   22101868.
  9. Fotiadis E, Kenanidis E, Samoladas E, Christodoulou A, Akritopoulos P, Akritopoulou K (May 2008). "Scheuermann's disease: focus on weight and height role". European Spine Journal. 17 (5): 673–678. doi:10.1007/s00586-008-0641-x. PMC   2367416 . PMID   18301929.
  10. McKenzie L, Sillence D (January 1992). "Familial Scheuermann disease: a genetic and linkage study". Journal of Medical Genetics. 29 (1): 41–45. doi:10.1136/jmg.29.1.41. PMC   1015820 . PMID   1552543.
  11. Wood, Kirkham (February 2012). "Adult Scheuermann Kyphosis: Evaluation, Management, and New Developments". Journal of the American Academy of Orthopaedic Surgeons. Retrieved 21 November 2024.
  12. Lehnert-Schroth C (2007). Three-Dimensional Treatment for Scoliosis: A Physiotherapeutic Method for Deformities of the Spine. Palo Alto, CA: The Martindale Press. pp. 185–187, 211–17, and passim. ISBN   978-3-8334-8138-3.
  13. Weiss HR, Dieckmann J, Gerner HJ (2002). "Effect of intensive rehabilitation on pain in patients with Scheuermann's disease". Studies in Health Technology and Informatics. 88: 254–257. PMID   15456045.
  14. Weiss HR, Dieckmann J, Gerner HJ (2002). "Outcome of in-patient rehabilitation in patients with M. Scheuermann evaluated by surface topography". Studies in Health Technology and Informatics. 88: 246–249. PMID   15456043.
  15. 1 2 Weiss HR, Turnbull D, Bohr S (September 2009). "Brace treatment for patients with Scheuermann's disease - a review of the literature and first experiences with a new brace design". Scoliosis. 4 (1): 22. doi: 10.1186/1748-7161-4-22 . PMC   2761858 . PMID   19788753.
  16. Horn SR, Poorman GW, Tishelman JC, Bortz CA, Segreto FA, Moon JY, et al. (January 2019). "Trends in Treatment of Scheuermann Kyphosis: A Study of 1,070 Cases From 2003 to 2012". Spine Deformity. 7 (1): 100–106. doi: 10.1016/j.jspd.2018.06.004 . PMC   7102192 . PMID   30587300.
  17. Huq S, Ehresman J, Cottrill E, Ahmed AK, Pennington Z, Westbroek EM, Sciubba DM (November 2019). "Treatment approaches for Scheuermann kyphosis: a systematic review of historic and current management". Journal of Neurosurgery. Spine. 32 (2): 235–247. doi:10.3171/2019.8.SPINE19500. PMID   31675699. S2CID   207835405.
  18. Riouallon G, Morin C, Charles YP, Roussouly P, Kreichati G, Obeid I, Wolff S (September 2018). "Posterior-only versus combined anterior/posterior fusion in Scheuermann disease: a large retrospective study". European Spine Journal. 27 (9): 2322–2330. doi:10.1007/s00586-018-5633-x. PMID   29779056. S2CID   29169417.
  19. 1 2 3 Hawes M (2006). "Impact of spine surgery on signs and symptoms of spinal deformity". Pediatric Rehabilitation. 9 (4): 318–339. doi:10.1080/13638490500402264. PMID   17111548. S2CID   20680230.
  20. Weiss HR, Goodall D (August 2008). "Rate of complications in scoliosis surgery - a systematic review of the Pub Med literature". Scoliosis. 3: 9. doi: 10.1186/1748-7161-3-9 . PMC   2525632 . PMID   18681956.
  21. Hawes MC, O'Brien JP (2008). "A century of spine surgery: what can patients expect?". Disability and Rehabilitation. 30 (10): 808–817. doi:10.1080/09638280801889972. PMID   18432439. S2CID   19443315.
  22. Shinzawa F (2007-10-18). "Bruins rookie Lucic punches up résumé – The Boston Globe". Boston.com. Retrieved 2010-08-31.
  23. Rosenthal K (12 October 2014). "There's a good reason why Hunter Pence throws like that". Fox Sports. Retrieved 13 October 2014.
  24. "One Year On George Sampson". The Times . London. 2009-05-17. Archived from the original on May 20, 2009. Retrieved 2010-05-23.
  25. Telekom Electronic Beats (3 July 2013). "MARCEL DETTMANN In the car with EB.TV". Archived from the original on 2021-12-19 via YouTube.
  26. Robinson G (17 March 2018). "The secret life of referees featuring Australian Angus Gardner". The Sydney Morning Herald . Retrieved 2 April 2018.