Sprained ankle

Last updated
Sprained ankle
Other namesTwisted ankle, rolled ankle, turned ankle
Ankle en.svg
Lateral view of the human ankle
Specialty Orthopedics, sports medicine, Physical medicine and rehabilitation, Family medicine
Symptoms Swelling, bruising, pain
Diagnostic method Physical examination
Differential diagnosis Maisonneuve fracture, high ankle sprain
Treatment Physical medicine and rehabilitation

A sprained ankle (twisted ankle, rolled ankle, turned ankle, etc.) is an injury where sprain occurs on one or more ligaments of the ankle. It is the most commonly occurring injury in sports, mainly in ball sports such as basketball, volleyball, football, and tennis. [1]

Contents

Signs and symptoms

Knowing the symptoms that can be experienced with a sprain is important in determining that the injury is not really a break in the bone. When a sprain occurs, hematoma occurs within the tissue that surrounds the joint, causing a bruise. White blood cells responsible for inflammation migrate to the area, and blood flow increases as well. [2] Along with this inflammation, swelling and pain is experienced. [1] The nerves in the area become more sensitive when the injury is suffered, so pain is felt as throbbing and will worsen if there is pressure placed on the area. Warmth and redness are also seen as blood flow is increased. [1] Also there is a decreased ability to move the joint. [1]

Cause

Movements – especially turning, and rolling of the foot – are the primary cause of an ankle sprain. [3]

The risk of a sprain is greatest during activities that involve explosive side-to-side motion, such as tennis, skateboarding or basketball. Sprained ankles can also occur during normal daily activities such as stepping off a curb or slipping on ice. Returning to activity before the ligaments have fully healed may cause them to heal in a stretched position, resulting in less stability at the ankle joint. This can lead to a condition known as chronic ankle instability (CAI), and an increased risk of ankle sprains. [4]

The following factors can contribute to an increased risk of ankle sprains:

Ankle sprains occur usually through excessive stress on the ligaments of the ankle. This can be caused by excessive external rotation, inversion or eversion of the foot caused by an external force. When the foot is moved past its range of motion, the excess stress puts a strain on the ligaments. If the strain is great enough to the ligaments past the yield point, then the ligament becomes damaged, or sprained. [5] [6]

Diagnosis

The diagnosis of a sprain relies on the medical history, including symptoms, as well as making a differential diagnosis, mainly in distinguishing it from strains or bone fractures. The Ottawa ankle rule is a simple, widely used rule to help differentiate fractures of the ankle or mid-foot from other ankle injuries that do not require x-ray radiography. It has a sensitivity of nearly 100%, meaning that a patient who tests negative, according to the rule almost certainly does not have an ankle fracture. [7] If ankle pain is persistent 6–8 weeks after initial sprain, MRI imaging of the joint can be considered to rule out peroneal tendon, osteochondral, or syndesmotic injury. [ citation needed ]

Classification of severity

Ankle sprains are classified as grade 1, 2, or 3, [8] and, depending on the amount of damage or the number of ligaments that are damaged, each sprain is classified from mild to severe. A grade 1 sprain is defined as mild damage to a ligament or ligaments without instability of the affected joint. A grade 2 sprain is considered a partial tear to the ligament, in which it is stretched to the point that it becomes loose. A grade 3 sprain is a complete tear of a ligament, causing instability in the affected joint. [3] Bruising may occur around the ankle. [9]

Types

Inversion (lateral) ankle sprain

The most common type of ankle sprain occurs when the foot has a force, typically body weight, causing it to internally rotate to a higher degree than it is supposed to, affecting the lateral side of the foot. When this type of ankle sprain happens, the outer, or lateral, ligaments are stretched too much. The anterior talofibular ligament is one of the most commonly involved ligaments in this type of sprain, followed by the calcaneofibular ligament [10] and posterior talofibular ligament [10] respectively, the later found in more severe ankle sprains. Approximately 70–85% of ankle sprains are inversion injuries.

Ankle inversion Ankle Inversion.jpg
Ankle inversion

When the ankle becomes inverted, the anterior talofibular and calcaneofibular ligaments are damaged. This is the most common ankle sprain.[ citation needed ]

Eversion (medial) ankle sprain

A less common type of ankle sprain is called an eversion injury, affecting the medial side of the foot. This happens when, instead of the ankle rotating medially resulting in an inversion injury (the foot rolling too much to the inside), the ankle rotates laterally resulting in an eversion injury (when the foot rolls too much to the outside). When this occurs, the medial, or deltoid, ligament is strained.

High (syndesmotic) ankle sprain

A high ankle sprain is an injury to the large ligaments above the ankle that join the two long bones of the lower leg, called the tibia and fibula. High ankle sprains commonly occur from a sudden and forceful outward twisting of the foot. This commonly occurs in contact and cutting sports such as football, rugby, ice hockey, roller derby, basketball, volleyball, lacrosse, softball, baseball, track, ultimate frisbee, soccer, tennis and badminton and horse riding.

Treatment

Initial treatment commonly consists of rest, icing, compression and elevation (which is often referred to by the mnemonic RICE or sometimes PRICE with P being "protection"). These elements have been recommended by physicians for decades for the treatment of soft tissue damage, and sprained ankles, one of the most common soft tissue injuries. RICE helps limit the amount of swelling to the area, and "facilitates venous and lymphatic drainage". [11] While nearly universally accepted as a treatment, there is insufficient evidence to determine its relative effectiveness as therapy for acute ankle sprains in adults, [12] and the National Athletic Trainers Association notes that most of the rationale for using RICE or individual components is based largely on low-quality clinical trials and laboratory studies with uninjured participants or animal models [13]

Conservative measures

A brace offering moderate support and compression for a Grade I ankle sprain Ankle brace for grade I or II.jpg
A brace offering moderate support and compression for a Grade I ankle sprain

Ice is often used to reduce swelling in cycles of 15–20 minutes on and 20–30 minutes off. Icing an ankle too long can cause cold injuries, which is indicated by the area turning white. [14] Also, it is often recommended that ice not be applied directly to the skin, but should have a thin buffer between the ice and the affected area, and some professionals think ice need not be applied at all. Recently, Gabe Mirkin, MD, who coined and popularized the acronym RICE in his The Sportsmedicine Book in 1978, no longer recommends "complete" rest or ice for healing a sprain. After reviewing modern studies, he notes that because ice closes off the blood vessels, "ice doesn't increase healing—it delays it," and "complete Rest may delay healing." He now advises skipping ice altogether unless needed to reduce pain from swelling. [15] A small but growing number of doctors no longer recommend RICE for sprains. [16] [17] [18]

In uncomplicated lateral ankle sprains, swelling of the soft tissue can be prevented with compression around both malleoli, elevation of the injured ankle higher than the heart, and pain-free exercises. [19]

An orthopedic walking boot is often used for the treatment of a sprained ankle injury. Braces and crutches are also used to help alleviate the pain so the injured ankle can heal as quickly and painlessly as possible.

Although found to be less effective than casts, compression bandages are used to provide support and compression for sprained ankles. Wrapping is started at the ball of the foot and slowly continued up to the base of the calf muscle; this allows the swelling to travel up toward the center of the body so that it does not gather in the foot. In addition, other external supports such as Kinesio taping does not "improve ankle functioning or performance in people with or without ankle injuries." [20] The "current evidence does not support or encourage the use of Kinesio taping applied to the ankle for improvements in functional performance, regardless the population." [20]

Rehabilitation and recovery

Many different types of rehabilitation exercises can be done to aid an ankle sprain regardless of the severity of the injury. The purpose of rehabilitation gives the ability for the ankle to regain strength and flexibility. A sprained ankle becomes swollen due to the increased amount of edema within the tissue. Physiologically, edema contributes to the sensation of pain in the ankle and so priority is given to allowing the fluid to leave the ankle. [21] This can be done instantly by implementing the RICE mechanism which is resting the ankle, applying ice, compressing, and elevating it. [11] The emphasis of the first week of rehabilitation should be on protecting the ankle to avoid further damage. As the healing progresses, stress can be applied by different mechanisms until the ankle is fully recovered. [22] The key to a fast recovery is to implement all the different types of ankle sprain exercises so that the range of motion will increase while the pain is decreasing. [23]

In cases where the ankle does not heal in an appropriate amount of time, other exercises need to be implemented so that strength and flexibility can be regained. Physical therapists assign different types of ankle sprain exercises that deal with ankle flexibility, strengthening, balance, and agility. If an ankle sprain does not heal properly, the joint may become unstable and may lead to chronic pain. [24] Receiving proper treatment and performing exercises that promote ankle function is important to strengthen the ankle and prevent further injury.

Ankle immobilization

A short period of immobilization in a below-knee cast or in an Aircast leads to a faster recovery at 3 months compared to a tubular compression bandage. [25] In contrast, a randomized controlled trial has concluded that appropriate exercise immediately after a sprain improves function and recovery. [26] These exercises were focused on increasing ankle range of movement, activation and strengthening of ankle musculature, and restoring normal sensorimotor control, and were carried out for 20 minutes, three times a day. [26] After the injury, it is advisable not to walk for a couple of days. Bed rest will help to accelerate the healing process and eliminate the chance of mishandling the affected limb. Driving vehicles or operating machinery should not be attempted. Acute lateral ankle sprain (LAS) is a common injury in athletes and is often associated with decreased athletic performance and, if treated poorly, can result in chronic ankle issues, such as instability. Physical performance demands, such as cutting, hopping, and landing, involved with certain sport participation suggests that the rehabilitation needs of an athlete after LAS may differ from those of the general population. Depending on the patient's goals, early dynamic training after an acute lateral ankle sprain in athletes can result in a shorter recovery time and reduced likelihood of reinjury [27]

The amount of therapy that a person can handle will depend on their level of pain and the grade of sprain they experienced. It is not recommended to return to sports or extreme physical activities until hopping on the ankle is possible without pain. Wearing high-top tennis shoes may also help prevent ankle sprains if the shoes used are laced snugly and if the ankle is taped with a wide, nonelastic adhesive tape. [28]

Ankle mobilization/manipulation

For acute ankle sprains, manual joint mobilization/manipulation of the ankle has been found to diminish pain and increase range of motion. For treatment of subacute/chronic lateral ankle sprains, these techniques improved ankle range-of-motion, decreased pain and improved function. [29]

Ankle exercises

To prevent sprains or re-injury from occurring, strengthening and stretching exercises should be done through a full range of ankle motion. To improve ankle mobility, ankle circles can be performed by extending the legs in front of the body and then moving the foot up and down, side to side, or rotating the foot in a circle. Another common exercise to improve mobility, as well as proprioception, is to use the toes to draw the letters of the alphabet in the air. Most importantly, the lateral aspect of the ankle joint should be strengthened with eversion exercises (i.e., underside of the foot is turned outward against resistance) to improve lateral ankle stability. [30] Stretching is also an important component of a strengthening program, to help maintain joint flexibility.

Balance and stability training are especially important to retrain the ankle muscles to work together to support the joint. [31] This includes exercises that are performed by standing on one foot and using the injured ankle to lift the body onto its toes. To further enhance balance and stability, exercise devices such as the wobble board can be used, progressing from double-leg to single-leg stance, first with eyes open and then with eyes closed, for enhanced effectiveness.

Flexibility exercises

Flexibility exercises include a towel stretch [32] and writing the alphabet with the toes, which will increase the range of motion.

Strengthening exercises

Ankle strengthening exercises are step ups and walking on toes which will strengthen the muscles around the swollen area. Rehabilitation exercises to strengthen the ankle has been shown to reduce the risk of re-injuring. Exercise prescription isn't clearly understood and deserves further research. [33]

Balance exercises

Balance exercises include the use of a balance board, which helps the whole body function to maintain balance. The use of balance boards has been shown to produce significantly positive results in gaining proper balance. [34] While performing balance exercises, the activity can be altered by using a single legged stance instead of a double legged stance, by opening or closing one's eyes, or changing the surface of balance to stable or unstable. This exercise can also be used for primary prevention of ankle sprains, as a meta-analysis exploring it's efficacy in prevention showed that there is a significant decrease in ankle sprain incidence among those who perform these exercises compared to people who don't. [35]

Agility exercises

Rehabilitation exercises for an ankle sprain Rehabilitation Exercises for an ankle sprain.jpg
Rehabilitation exercises for an ankle sprain

Plyometrics exercises such as squat jumps and power skipping should not be implemented until the ankle has regained full agility.

Other strategies that can be used to prevent ankle injury include:

  • Ensure proper warm-up prior to stretching and activity;
  • When running, choose level surfaces and avoid rocks or holes;
  • Ensure that shoes have adequate heel support;
  • If high-heeled shoes are worn, ensure that heels are no more than two inches in height, and avoid heels with a narrow base.

Prognosis

Most people improve significantly in the first two weeks. However, some still have problems with pain and instability after one year (5–30%). Re-injury is also very common. [36] The risk of recurrence can reach one-third of cases. [37] There are currently no published evidence-based criteria to inform RTS (return to sport) decisions for patients with a lateral ankle sprain injury. Return to sport decisions following acute lateral ankle sprain injury are generally time-based. [38]

Mild sprains (Grades 1-2) relating to over stretching or partial tears typically begin to feel better in a few days to a week and heal by six weeks. More severe ankle sprains (Grades 2-3) involving a full tear or rupture could take more than a few weeks or months to fully recover. [39] The mean time patients return to sports is 12.9 weeks. Average time to return to work after injury range from less than one week to two months. [40]

Epidemiology

Adolescents vs general population ankle sprain instances Adolescents vs general population ankle sprain incidences.jpg
Adolescents vs general population ankle sprain instances
Ankle Sprain Epidemiology- U.S. Military vs General Population Ankle Sprain Epidemiology- U.S. Military vs General Population.jpg
Ankle Sprain Epidemiology- U.S. Military vs General Population

Ankle sprains can occur through either sports or activities of daily living, and individuals can be at higher or lower risk depending on a variety of circumstances including their homeland, race, age, sex, or profession. [41] In addition, there are different types of ankle sprains such as eversion ankle sprains and inversion ankle sprains. Overall, the most common type of ankle sprain to occur is an inversion ankle sprain, where excessive plantar flexion and supination cause the anterior talofibular ligament to be affected. A study showed that for a population of Scandinavians, inversion ankle sprains accounted for 85% of all ankle sprains. [34] Most ankle sprains occur in more active people, such as athletes and regular exercisers.

Previous ankle sprains

When an ankle sprain occurs, subsequent ankle sprains are much more likely to follow. [42] The rate of recurrence is particularly high for athletes in high-risk sports. [43] The most widely recommended preventative measures for recurring sprains are wearing ankle-protective gear [44] (tape, or ankle brace) and implementing exercises designed to strengthen the ankle and improve one's balance (e.g., balance ball exercises). In a review article of ankle sprain prevention research, the authors reference a season-long study on a group of soccer players. 60 players wore ankle-protective (tape or ankle-braces) throughout the soccer season, and another 171 players were enrolled in the control group, as they wore no ankle protective gear. At the end of the season, 17% of the players who did not wear ankle braces/tape sprained their ankles, while only 3% of the players who wore protection incurred the same injury. Amongst the players who sprained their ankles and did not wear ankle-protective gear, 25% had a history of previous ankle sprains. [45] Another peer-reviewed article references a study which concluded that ankle exercising could decrease the risk of recurring sprains by 11%. [46]

Age

In a study comparing the prevalence of ankle sprains between age, race, and sex, individuals who were aged 10–19 years old had highest instances of ankle sprains. [47] It can be suggested that adolescents are more physically active, which leads to higher chances of ankle sprains. Since sports deal with high utilization of the ankle, over 50% of ankle sprains are due to sport-related injuries. [48]

Ankle sprain incident rates of average males to females Ankle sprain incidence rates of average males to females.jpg
Ankle sprain incident rates of average males to females

U.S. military

Moreover, average ankle sprains for the general U.S. population are estimated at 5–7 ankle sprains for every 1000 person-years; however, a study showed that for military cadets, instances for ankle sprains were about 10 times those of the general population [49]

Male vs. female

Another study comparing sex influences on ankle sprains found that male and female counterparts had similar incidence rates of ankle sprains. However, at a specific age range of 19–25 years old, males were found to have a substantially greater rate of ankle sprains than females. Furthermore, at ages 30 and over, females showed a higher incidence of ankle sprains than males. [41] From this, it can be said that age and activity levels are better indicators of ankle sprain risks than gender.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Sports injury</span> Physical and emotional trauma

Sports injuries are injuries that occur during sport, athletic activities, or exercising. In the United States, there are approximately 30 million teenagers and children who participate in some form of organized sport. Of those, about three million athletes age 14 years and under experience a sports injury annually. According to a study performed at Stanford University, 21 percent of the injuries observed in elite college athletes caused the athlete to miss at least one day of sport, and approximately 77 percent of these injuries involved the knee, lower leg, ankle, or foot. In addition to those sport injuries, the leading cause of death related to sports injuries is traumatic head or neck occurrences.

<span class="mw-page-title-main">Rotator cuff</span> Group of muscles

The rotator cuff is a group of muscles and their tendons that act to stabilize the human shoulder and allow for its extensive range of motion. Of the seven scapulohumeral muscles, four make up the rotator cuff. The four muscles are:

<span class="mw-page-title-main">Ankle</span> Region where the foot and the leg meet

The ankle, the talocrural region or the jumping bone (informal) is the area where the foot and the leg meet. The ankle includes three joints: the ankle joint proper or talocrural joint, the subtalar joint, and the inferior tibiofibular joint. The movements produced at this joint are dorsiflexion and plantarflexion of the foot. In common usage, the term ankle refers exclusively to the ankle region. In medical terminology, "ankle" can refer broadly to the region or specifically to the talocrural joint.

<span class="mw-page-title-main">Sprain</span> Damage to one or more ligaments in a joint

A sprain is a soft tissue injury of the ligaments within a joint, often caused by a sudden movement abruptly forcing the joint to exceed its functional range of motion. Ligaments are tough, inelastic fibers made of collagen that connect two or more bones to form a joint and are important for joint stability and proprioception, which is the body's sense of limb position and movement. Sprains may be mild, moderate, or severe, with the latter two classes involving some degree of tearing of the ligament. Sprains can occur at any joint but most commonly occur in the ankle, knee, or wrist. An equivalent injury to a muscle or tendon is known as a strain.

<span class="mw-page-title-main">Anterior cruciate ligament</span> Type of cruciate ligament in the human knee

The anterior cruciate ligament (ACL) is one of a pair of cruciate ligaments in the human knee. The two ligaments are also called "cruciform" ligaments, as they are arranged in a crossed formation. In the quadruped stifle joint, based on its anatomical position, it is also referred to as the cranial cruciate ligament. The term cruciate translates to cross. This name is fitting because the ACL crosses the posterior cruciate ligament to form an "X". It is composed of strong, fibrous material and assists in controlling excessive motion. This is done by limiting mobility of the joint. The anterior cruciate ligament is one of the four main ligaments of the knee, providing 85% of the restraining force to anterior tibial displacement at 30 and 90° of knee flexion. The ACL is the most injured ligament of the four located in the knee.

<span class="mw-page-title-main">Achilles tendinitis</span> Medical condition of the ankle and heel

Achilles tendinitis, also known as achilles tendinopathy, occurs when the Achilles tendon, found at the back of the ankle, becomes sore. Achilles tendinopathy is accompanied by alterations in the tendon's structure and mechanical properties. The most common symptoms are pain and swelling around the affected tendon. The pain is typically worse at the start of exercise and decreases thereafter. Stiffness of the ankle may also be present. Onset is generally gradual.

<span class="mw-page-title-main">Joint dislocation</span> Medical injury

A joint dislocation, also called luxation, occurs when there is an abnormal separation in the joint, where two or more bones meet. A partial dislocation is referred to as a subluxation. Dislocations are often caused by sudden trauma on the joint like an impact or fall. A joint dislocation can cause damage to the surrounding ligaments, tendons, muscles, and nerves. Dislocations can occur in any major joint or minor joint. The most common joint dislocation is a shoulder dislocation.

A soft tissue injury is the damage of muscles, ligaments and tendons throughout the body. Common soft tissue injuries usually occur from a sprain, strain, a one-off blow resulting in a contusion or overuse of a particular part of the body. Soft tissue injuries can result in pain, swelling, bruising and loss of function.

<span class="mw-page-title-main">Ankle fracture</span> Medical condition

An ankle fracture is a break of one or more of the bones that make up the ankle joint. Symptoms may include pain, swelling, bruising, and an inability to walk on the injured leg. Complications may include an associated high ankle sprain, compartment syndrome, stiffness, malunion, and post-traumatic arthritis.

<span class="mw-page-title-main">Anterior cruciate ligament injury</span> Ligament injury near the knee

An anterior cruciate ligament injury occurs when the anterior cruciate ligament (ACL) is either stretched, partially torn, or completely torn. The most common injury is a complete tear. Symptoms include pain, an audible cracking sound during injury, instability of the knee, and joint swelling. Swelling generally appears within a couple of hours. In approximately 50% of cases, other structures of the knee such as surrounding ligaments, cartilage, or meniscus are damaged.

<span class="mw-page-title-main">RICE (medicine)</span> Medical acronym

RICE is a mnemonic acronym for the four elements of a treatment regimen that was once recommended for soft tissue injuries: rest, ice, compression, and elevation. It was considered a first-aid treatment rather than a cure and aimed to control inflammation. It was thought that the reduction in pain and swelling that occurred as a result of decreased inflammation helped with healing. The protocol was often used to treat sprains, strains, cuts, bruises, and other similar injuries. The first time that we have been known to use ice for injuries dates back to the 1960s when a 12-year-old boy needed to have a limb reattached. They preserved the limb before surgery by using ice. The news was widespread of the successful operation and ice was starting to be used to treat acute injuries.

<span class="mw-page-title-main">Balance (ability)</span> Ability to maintain the line of gravity of a body

Balance in biomechanics, is an ability to maintain the line of gravity of a body within the base of support with minimal postural sway. Sway is the horizontal movement of the centre of gravity even when a person is standing still. A certain amount of sway is essential and inevitable due to small perturbations within the body or from external triggers. An increase in sway is not necessarily an indicator of dysfunctional balance so much as it is an indicator of decreased sensorimotor control.

<span class="mw-page-title-main">Meniscus tear</span> Rupturing of the fibrocartilage strips in the knee called menisci

A tear of a meniscus is a rupturing of one or more of the fibrocartilage strips in the knee called menisci. When doctors and patients refer to "torn cartilage" in the knee, they actually may be referring to an injury to a meniscus at the top of one of the tibiae. Menisci can be torn during innocuous activities such as walking or squatting. They can also be torn by traumatic force encountered in sports or other forms of physical exertion. The traumatic action is most often a twisting movement at the knee while the leg is bent. In older adults, the meniscus can be damaged following prolonged 'wear and tear'. Especially acute injuries can lead to displaced tears which can cause mechanical symptoms such as clicking, catching, or locking during motion of the joint. The joint will be in pain when in use, but when there is no load, the pain goes away.

A high ankle sprain, also known as a syndesmotic ankle sprain (SAS), is a sprain of the syndesmotic ligaments that connect the tibia and fibula in the lower leg, thereby creating a mortise and tenon joint for the ankle. High ankle sprains are described as high because they are located above the ankle. They comprise approximately 15% of all ankle sprains. Unlike the common lateral ankle sprains, when ligaments around the ankle are injured through an inward twisting, high ankle sprains are caused when the lower leg and foot externally rotates.

<span class="mw-page-title-main">Patellar dislocation</span> Medical condition

A patellar dislocation is a knee injury in which the patella (kneecap) slips out of its normal position. Often the knee is partly bent, painful and swollen. The patella is also often felt and seen out of place. Complications may include a patella fracture or arthritis.

<span class="mw-page-title-main">Knee pain</span> Medical condition

Knee pain is pain in or around the knee.

Posterolateral corner injuries of the knee are injuries to a complex area formed by the interaction of multiple structures. Injuries to the posterolateral corner can be debilitating to the person and require recognition and treatment to avoid long term consequences. Injuries to the PLC often occur in combination with other ligamentous injuries to the knee; most commonly the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL). As with any injury, an understanding of the anatomy and functional interactions of the posterolateral corner is important to diagnosing and treating the injury.

<span class="mw-page-title-main">Ulnar collateral ligament injury of the elbow</span> Medical condition

Ulnar collateral ligament injuries can occur during certain activities such as overhead baseball pitching. Acute or chronic disruption of the ulnar collateral ligament result in medial elbow pain, valgus instability, and impaired throwing performance. There are both non-surgical and surgical treatment options.

<span class="mw-page-title-main">Medial knee injuries</span> Medical condition

Medial knee injuries are the most common type of knee injury. The medial ligament complex of the knee consists of:

Running injuries affect about half of runners annually. The frequencies of various RRI depend on the type of running, such as speed and mileage. Some injuries are acute, caused by sudden overstress, such as side stitch, strains, and sprains. Many of the common injuries that affect runners are chronic, developing over longer periods as the result of overuse. Common overuse injuries include shin splints, stress fractures, Achilles tendinitis, Iliotibial band syndrome, Patellofemoral pain, and plantar fasciitis.

References

  1. 1 2 3 4 Halabchi, Farzin; Hassabi, Mohammad (18 December 2020). "Acute ankle sprain in athletes: Clinical aspects and algorithmic approach". World Journal of Orthopedics. 11 (12): 534–558. doi: 10.5312/wjo.v11.i12.534 . ISSN   2218-5836. PMC   7745493 . PMID   33362991.
  2. Ankle Sprains Symptoms -eMedicineHealth.com, Retrieved on 22 January 2010.
  3. 1 2 "Sprained Ankle". OrthoInfo. American Academy of Orthopedic Surgeons. Retrieved 2 November 2011.
  4. Al-Mohrej, Omar A.; Al-Kenani, Nader S. (2016). "Chronic ankle instability: Current perspectives". Avicenna Journal of Medicine. 6 (4): 103–108. doi: 10.4103/2231-0770.191446 . ISSN   2231-0770. PMC   5054646 . PMID   27843798.
  5. Wikstrom EA, Wikstrom AM, Hubbard-Turner T (2012). "Ankle sprains: treating to prevent the long-term consequences". JAAPA. 25 (10): 40–2, 44–5. doi:10.1097/01720610-201210000-00009. PMID   23115869. S2CID   36819410.
  6. Gehring D, Wissler S, Mornieux G, Gollhofer A (2013). "How to sprain your ankle — a biomechanical case report of an inversion trauma". J Biomech. 46 (1): 175–8. doi:10.1016/j.jbiomech.2012.09.016. PMID   23078945.
  7. Bachmann LM, Kolb E, Koller MT, Steurer J, ter Riet G (February 2003). "Accuracy of Ottawa ankle rules to exclude fractures of the ankle and mid-foot: systematic review". BMJ. 326 (7386): 417. doi:10.1136/bmj.326.7386.417. PMC   149439 . PMID   12595378.
  8. Moreira V, Antunes F (2008). "[Ankle sprains: from diagnosis to management. the physiatric view]". Acta Med Port (in Portuguese). 21 (3): 285–92. PMID   18674420.
  9. Stanley, James. "Sprained Ankle". North Yorkshire Orthopaedic Specialists. Archived from the original on 2 February 2014. Retrieved 2 November 2012.
  10. 1 2 Akbari, Mohammed; Karimi, Hossein; Farahini, Hossein; Fahgihzadeh, Soghrat (November–December 2006). "Balance problems after unilateral ankle sprains" (PDF). The Journal of Rehabilitation Research and Development. 43 (7): 819–824. doi: 10.1682/JRRD.2006.01.0001 . PMID   17436168. Archived from the original (PDF) on 11 November 2023.
  11. 1 2 Wolfe MW, Uhl TL, Mattacola CG, McCluskey LC (2001). "Management of ankle sprains". Am Fam Physician. 63 (1): 93–104. PMID   11195774. Archived from the original on 13 February 2023.
  12. van den Bekerom MP, Struijs PA, Blankevoort L, Welling L, van Dijk CN, Kerkhoffs GM (2012). "What is the evidence for rest, ice, compression, and elevation therapy in the treatment of ankle sprains in adults?". Journal of Athletic Training. 47 (4): 435–43. doi: 10.4085/1062-6050-47.4.14 . PMC   3396304 . PMID   22889660.
  13. Kaminski, Thomas W.; Hertel, Jay; Amendola, Ned; Docherty, Carrie L.; Dolan, Michael G.; Hopkins, J. Ty; Nussbaum, Eric; Poppy, Wendy; Richie, Doug (July–August 2013). "National Athletic Trainers' Association Position Statement: Conservative Management and Prevention of Ankle Sprains in Athletes" (PDF). Journal of Athletic Training. 48 (4): 528–545. doi: 10.4085/1062-6050-48.4.02 . PMC   3718356 . PMID   23855363. Archived (PDF) from the original on 16 March 2024.
  14. "Sprained ankle: Lifestyle and home remedies", MayoClinic.com. Retrieved 3 May 2010.
  15. Byrne, Sue (29 October 2015). "Why You Should Avoid Ice for a Sprained Ankle". Consumer Reports. Archived from the original on 24 February 2023.
  16. Han, Andrew (5 March 2019). "Why icing a sprain doesn't help, and could slow recovery". The Washington Post. Retrieved 2 March 2021.
  17. Hall, Harriet (18 November 2020). "Don't Ice Sprains". Skeptical Inquirer. Center for Inquiry. Retrieved 2 March 2021.
  18. van den Bekerom, Michel P.J.; Struijs, Peter A.A.; Blankevoort, Leendert; Welling, Lieke; van Dijk, C. Niek; Kerkhoffs, Gino M.M.J. (1 July 2012). "What Is the Evidence for Rest, Ice, Compression, and Elevation Therapy in the Treatment of Ankle Sprains in Adults?". Journal of Athletic Training. 47 (4). Journal of Athletic Training/NATA: 435–443. doi: 10.4085/1062-6050-47.4.14 . ISSN   1062-6050. PMC   3396304 . PMID   22889660.
  19. Aronen JG, Garrick JG (2009). "Acute Ankle Injuries, Part 1: Office Evaluation and Management". Consultant. 49: 413–421.
    Aronen JG, Garrick JG (2009). "Acute Ankle Injuries, Part 2: Treatment of Uncomplicated Lateral Ankle Sprains". Consultant. 49: 734–740.
  20. 1 2 Nunes, Guilherme S.; Feldkircher, Jonatan M.; Tessarin, Bruna Mariana; Bender, Paula Urio; da Luz, Clarissa Medeiros; de Noronha, Marcos (February 2021). "Kinesio taping does not improve ankle functional or performance in people with or without ankle injuries: Systematic review and meta-analysis". Clinical Rehabilitation. 35 (2): 182–199. doi:10.1177/0269215520963846. ISSN   1477-0873. PMID   33081510. S2CID   224820589.
  21. Coté DJ, Prentice WE, Hooker DN, Shields EW (1988). "Comparison of three treatment procedures for minimizing ankle sprain swelling". Phys Ther. 68 (7): 1072–6. doi:10.1093/ptj/68.7.1072. PMID   3133668.
  22. Mattacola CG, Dwyer MK (2002). "Rehabilitation of the Ankle After Acute Sprain or Chronic Instability". J Athl Train. 37 (4): 413–429. PMC   164373 . PMID   12937563.
  23. Zöch C, Fialka-Moser V, Quittan M (2003). "Rehabilitation of ligamentous ankle injuries: a review of recent studies". Br J Sports Med. 37 (4): 291–5. doi:10.1136/bjsm.37.4.291. PMC   1724658 . PMID   12893710.
  24. Sprained Ankle Overview – Webmd.com, Retrieved on 22 January 2010.
  25. Lamb SE, Marsh JL, Hutton JL, Nakash R, Cooke MW (February 2009). "Mechanical supports for acute, severe ankle sprain: a pragmatic, multicentre, randomised controlled trial". Lancet. 373 (9663): 575–81. doi:10.1016/S0140-6736(09)60206-3. PMID   19217992. S2CID   27027064.
  26. 1 2 Bleakley CM, O'Connor SR, Tully MA, et al. (2010). "Effect of accelerated rehabilitation on function after ankle sprain: randomised controlled trial". BMJ. 340: c1964. doi: 10.1136/bmj.c1964 . PMID   20457737.
  27. Tee, Eugene; Melbourne, Jack; Sattler, Larissa; Hing, Wayne (30 December 2022). "Evidence for Rehabilitation Interventions After Acute Lateral Ankle Sprains in Athletes: A Scoping Review". Journal of Sport Rehabilitation. 31 (4): 457–464. doi:10.1123/jsr.2021-0244. ISSN   1543-3072. PMID   34969012. S2CID   245594015.
  28. Ankle Sprains: Healing and Preventing Injury – Family doctor.org, Retrieved on 22 January 2010.
  29. Loudon JK, Reiman MP, Sylvain J (2013). "The efficacy of manual joint mobilisation/manipulation in treatment of lateral ankle sprains: a systematic review". Br J Sports Med. 48 (5): 365–70. doi:10.1136/bjsports-2013-092763. PMID   23980032. S2CID   42324823.
  30. Arnold BL, Linens SW, de la Motte SJ, Ross SE (November–December 2009). "Concentric evertor strength differences and functional ankle instability: A meta-analysis". Journal of Athletic Training. 44 (6): 653–662. doi:10.4085/1062-6050-44.6.653. PMC   2775368 . PMID   19911093.
  31. Sprained Ankle: Treatment and Drugs – Mayo clinic.com, Retrieved on 22 January 2010.
  32. http://www.livestrong.com/article/470163-ankle-towel-stretch// towel stretch
  33. Bleakley, Chris M.; Taylor, Jeffrey B.; Dischiavi, Steven L.; Doherty, Cailbhe; Delahunt, Eamonn (July 2019). "Rehabilitation Exercises Reduce Reinjury Post Ankle Sprain, But the Content and Parameters of an Optimal Exercise Program Have Yet to Be Established: A Systematic Review and Meta-analysis". Archives of Physical Medicine and Rehabilitation. 100 (7): 1367–1375. doi:10.1016/j.apmr.2018.10.005. ISSN   1532-821X. PMID   30612980. S2CID   58590925.
  34. 1 2 Wester JU, Jespersen SM, Nielsen KD, Neumann L (1996). "Wobble board training after partial sprains of the lateral ligaments of the ankle: a prospective randomized study". J Orthop Sports Phys Ther. 23 (5): 332–6. doi:10.2519/jospt.1996.23.5.332. PMID   8728532.
  35. Bellows, R.; Wong, C. K. (2018). "The Effect of Bracing and Balance Training on Ankle Sprain Incidence Among Athletes: A Systematic Review with Meta-Analysis". International Journal of Sports Physical Therapy. 13 (3): 379–388. doi:10.26603/ijspt20180379. PMC   6044595 . PMID   30038824.
  36. Margo KL (December 2008). "Review: many adults still have pain and subjective instability at 1 year after acute lateral ankle sprain". Evid-Based Med. 13 (6): 187. doi:10.1136/ebm.13.6.187. PMID   19043045. S2CID   196381411.
  37. van Rijn, Rogier M.; van Os, Anton G.; Bernsen, Roos M.D.; Luijsterburg, Pim A.; Koes, Bart W.; Bierma-Zeinstra, Sita M.A. (2008). "What Is the Clinical Course of Acute Ankle Sprains? A Systematic Literature Review". The American Journal of Medicine. 121 (4): 324–331.e7. doi:10.1016/j.amjmed.2007.11.018. PMID   18374692.
  38. Tassignon, Bruno; Verschueren, Jo; Delahunt, Eamonn; Smith, Michelle; Vicenzino, Bill; Verhagen, Evert; Meeusen, Romain (1 April 2019). "Criteria-Based Return to Sport Decision-Making Following Lateral Ankle Sprain Injury: a Systematic Review and Narrative Synthesis". Sports Medicine. 49 (4): 601–619. doi:10.1007/s40279-019-01071-3. ISSN   1179-2035. PMID   30747379. S2CID   73428996.
  39. "Recovering from an ankle sprain". Harvard Health. 8 February 2007. Retrieved 21 November 2022.
  40. Anandacoomarasamy, A.; Barnsley, L. (1 March 2005). "Long term outcomes of inversion ankle injuries". British Journal of Sports Medicine. 39 (3): e14. doi: 10.1136/bjsm.2004.011676 . ISSN   0306-3674. PMC   1725165 . PMID   15728682.
  41. 1 2 Waterman BR, Owens BD, Davey S, Zacchilli MA, Belmont PJ (2010). "The epidemiology of ankle sprains in the United States". J Bone Joint Surg Am. 92 (13): 2279–84. doi:10.2106/JBJS.I.01537. PMID   20926721.
  42. "Chronic Ankle Instability". www.foothealthfacts.org. Foot Health Facts. Retrieved 4 April 2018.
  43. Gribble PA, Delahunt E, Bleakley CM, Caulfield B, Docherty CL, Fong DT, Fourchet F, Hertel J, Hiller CE, Kaminski TW, McKeon PO, Refshauge KM, van der Wees P, Vicenzino W, Wikstrom EA (2014). "Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium". Journal of Athletic Training (Review). 49 (1): 121–7. doi:10.4085/1062-6050-49.1.14. PMC   3917288 . PMID   24377963.
  44. Stoimenov, Vassil (17 March 2018). "How to Prevent The Injuries Most Likely to Happen to You". PositiveMed. USA: PositiveMed. Retrieved 4 April 2018.
  45. Gross M, Liu H (2003). "The Role of Ankle Bracing for Prevention of Ankle Sprain Injuries". J Orthop Sports Phys Ther. 33 (10): 572–577. doi:10.2519/jospt.2003.33.10.572. PMID   14620786.
  46. Hayman J, Prasad S, Stulberg D, Hickner J (2010). "Help patients prevent repeat ankle injury". J Fam Pract. 59 (1): 32–4. PMC   3183932 . PMID   20074499.
  47. Bridgman SA, Clement D, Downing A, Walley G, Phair I, Maffulli N (2003). "Population based epidemiology of ankle sprains attending accident and emergency units in the West Midlands of England, and a survey of UK practice for severe ankle sprains". Emerg Med J. 20 (6): 508–10. doi:10.1136/emj.20.6.508. PMC   1726220 . PMID   14623833.
  48. Yeung MS, Chan K, So CH, Yuan WY (1994). "An epidemiological survey on ankle sprain". Journal of Sports Medicine. 28 (2): 112–6. doi:10.1136/bjsm.28.2.112. PMC   1332043 . PMID   7921910.
  49. Waterman BR, Belmont PJ, Cameron KL, Deberardino TM, Owens BD (2010). "Epidemiology of ankle sprain at the United States Military Academy". Am J Sports Med. 38 (4): 797–803. doi:10.1177/0363546509350757. PMID   20145281. S2CID   41943373.

Further reading