Suppressor of cytokine signaling 1

Last updated
SOCS1
Identifiers
Aliases SOCS1 , CIS1, CISH1, JAB, SOCS-1, SSI-1, SSI1, TIP3, suppressor of cytokine signaling 1, TIP-3, AISIMD
External IDs OMIM: 603597 MGI: 1354910 HomoloGene: 2776 GeneCards: SOCS1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_003745

NM_001271603
NM_009896

RefSeq (protein)

NP_003736

NP_001258532
NP_034026

Location (UCSC) Chr 16: 11.25 – 11.26 Mb Chr 16: 10.6 – 10.6 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Suppressor of cytokine signaling 1 is a protein that in humans is encoded by the SOCS1 gene. [5] [6] SOCS1 orthologs [7] have been identified in several mammals for which complete genome data are available.

Contents

Function

This gene encodes a member of the STAT-induced STAT inhibitor (SSI), also known as suppressor of cytokine signalling (SOCS), family. SSI family members are cytokine-inducible negative regulators of cytokine signaling. The expression of this gene can be induced by a subset of cytokines, including IL2, IL3 erythropoietin (EPO), GM-CSF, and interferon-gamma (IFN-γ). The protein encoded by this gene functions downstream of cytokine receptors, and takes part in a negative feedback loop to attenuate cytokine signaling. Knockout studies in mice suggested the role of this gene as a modulator of IFN-γ action, which is required for normal postnatal growth and survival. [8]

Several recent viral studies have shown that viral genes, such as Tax gene product (Tax), encoded by HTLV-1, could hijack SOCS1 to inhibit host antiviral pathways, as a strategy to evade host immunity. [9]

Interactions

The suppressor of cytokine signaling 1 has been shown to interact with:

See also

Related Research Articles

The JAK-STAT signaling pathway is a chain of interactions between proteins in a cell, and is involved in processes such as immunity, cell division, cell death, and tumour formation. The pathway communicates information from chemical signals outside of a cell to the cell nucleus, resulting in the activation of genes through the process of transcription. There are three key parts of JAK-STAT signalling: Janus kinases (JAKs), signal transducer and activator of transcription proteins (STATs), and receptors. Disrupted JAK-STAT signalling may lead to a variety of diseases, such as skin conditions, cancers, and disorders affecting the immune system.

<span class="mw-page-title-main">Oncostatin M</span>

Oncostatin M, also known as OSM, is a protein that in humans is encoded by the OSM gene.

<span class="mw-page-title-main">Erythropoietin receptor</span> Protein-coding gene in the species Homo sapiens

The erythropoietin receptor (EpoR) is a protein that in humans is encoded by the EPOR gene. EpoR is a 52kDa peptide with a single carbohydrate chain resulting in an approximately 56-57 kDa protein found on the surface of EPO responding cells. It is a member of the cytokine receptor family. EpoR pre-exists as dimers. These dimers were originally thought to be formed by extracellular domain interactions, however, it is now assumed that it is formed by interactions of the transmembrane domain and that the original structure of the extracellular interaction site was due to crystallisation conditions and does not depict the native conformation. Binding of a 30 kDa ligand erythropoietin (Epo), changes the receptor's conformational change, resulting in the autophosphorylation of Jak2 kinases that are pre-associated with the receptor. At present, the most well-established function of EpoR is to promote proliferation and rescue of erythroid progenitors from apoptosis.

<span class="mw-page-title-main">Glycoprotein 130</span> Mammalian protein found in Homo sapiens

Glycoprotein 130 is a transmembrane protein which is the founding member of the class of all cytokine receptors. It forms one subunit of the type I cytokine receptor within the IL-6 receptor family. It is often referred to as the common gp130 subunit, and is important for signal transduction following cytokine engagement. As with other type I cytokine receptors, gp130 possesses a WSXWS amino acid motif that ensures correct protein folding and ligand binding. It interacts with Janus kinases to elicit an intracellular signal following receptor interaction with its ligand. Structurally, gp130 is composed of five fibronectin type-III domains and one immunoglobulin-like C2-type (immunoglobulin-like) domain in its extracellular portion.

<span class="mw-page-title-main">Suppressor of cytokine signalling</span>

SOCS refers to a family of genes involved in inhibiting the JAK-STAT signaling pathway.

<span class="mw-page-title-main">Tyrosine kinase 2</span> Enzyme and coding gene in humans

Non-receptor tyrosine-protein kinase TYK2 is an enzyme that in humans is encoded by the TYK2 gene.

<span class="mw-page-title-main">Janus kinase 3</span> Mammalian protein found in Homo sapiens

Tyrosine-protein kinase JAK3 is a tyrosine kinase enzyme that in humans is encoded by the JAK3 gene.

<span class="mw-page-title-main">Janus kinase 2</span> Non-receptor tyrosine kinase and coding gene in humans

Janus kinase 2 is a non-receptor tyrosine kinase. It is a member of the Janus kinase family and has been implicated in signaling by members of the type II cytokine receptor family, the GM-CSF receptor family, the gp130 receptor family, and the single chain receptors.

<span class="mw-page-title-main">Janus kinase 1</span>

JAK1 is a human tyrosine kinase protein essential for signaling for certain type I and type II cytokines. It interacts with the common gamma chain (γc) of type I cytokine receptors, to elicit signals from the IL-2 receptor family, the IL-4 receptor family, the gp130 receptor family. It is also important for transducing a signal by type I (IFN-α/β) and type II (IFN-γ) interferons, and members of the IL-10 family via type II cytokine receptors. Jak1 plays a critical role in initiating responses to multiple major cytokine receptor families. Loss of Jak1 is lethal in neonatal mice, possibly due to difficulties suckling. Expression of JAK1 in cancer cells enables individual cells to contract, potentially allowing them to escape their tumor and metastasize to other parts of the body.

<span class="mw-page-title-main">IRS1</span>

Insulin receptor substrate 1 (IRS-1) is a signaling adapter protein that in humans is encoded by the IRS-1 gene. It is a 131 kDa protein with amino acid sequence of 1242 residues. It contains a single pleckstrin homology (PH) domain at the N-terminus and a PTB domain ca. 40 residues downstream of this, followed by a poorly conserved C-terminus tail. Together with IRS2, IRS3 (pseudogene) and IRS4, it is homologous to the Drosophila protein chico, whose disruption extends the median lifespan of flies up to 48%. Similarly, Irs1 mutant mice experience moderate life extension and delayed age-related pathologies.

<span class="mw-page-title-main">SOCS3</span>

Suppressor of cytokine signaling 3 is a protein that in humans is encoded by the SOCS3 gene. This gene encodes a member of the STAT-induced STAT inhibitor (SSI), also known as suppressor of cytokine signaling (SOCS), family. SSI family members are cytokine-inducible negative regulators of cytokine signaling.

<span class="mw-page-title-main">Thrombopoietin receptor</span> Protein-coding gene in the species Homo sapiens

The thrombopoietin receptor also known as the myeloproliferative leukemia protein or CD110 is a protein that in humans is encoded by the MPL oncogene.

<span class="mw-page-title-main">TEC (gene)</span> Human gene

Tyrosine-protein kinase Tec is a tyrosine kinase that in humans is encoded by the TEC gene. Tec kinase is expressed in hematopoietic, liver, and kidney cells and plays an important role in T-helper cell processes. Tec kinase is the name-giving member of the Tec kinase family, a family of non-receptor protein-tyrosine kinases.

<span class="mw-page-title-main">SOCS2</span>

Suppressor of cytokine signaling 2 is a protein that in humans is encoded by the SOCS2 gene.

<span class="mw-page-title-main">CISH (protein)</span>

Cytokine-inducible SH2-containing protein is a protein that in humans is encoded by the CISH gene. CISH orthologs have been identified in most mammals with sequenced genomes. CISH controls T cell receptor (TCR) signaling, and variations of CISH with certain SNPs are associated with susceptibility to bacteremia, tuberculosis and malaria.

<span class="mw-page-title-main">SH2B2</span>

SH2B adapter protein 2 is a protein that in humans is encoded by the SH2B2 gene.

<span class="mw-page-title-main">IL2RB</span> Protein-coding gene in the species Homo sapiens

Interleukin-2 receptor subunit beta is a protein that in humans is encoded by the IL2RB gene. Also known as CD122; IL15RB; P70-75.

<span class="mw-page-title-main">SOCS5</span>

Suppressor of cytokine signaling 5 is a protein that in humans is encoded by the SOCS5 gene.

<span class="mw-page-title-main">SOCS6</span>

Suppressor of cytokine signaling 6 is a protein that in humans is encoded by the SOCS6 gene.

A non-receptor tyrosine kinase (nRTK) is a cytosolic enzyme that is responsible for catalysing the transfer of a phosphate group from a nucleoside triphosphate donor, such as ATP, to tyrosine residues in proteins. Non-receptor tyrosine kinases are a subgroup of protein family tyrosine kinases, enzymes that can transfer the phosphate group from ATP to a tyrosine residue of a protein (phosphorylation). These enzymes regulate many cellular functions by switching on or switching off other enzymes in a cell.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000185338 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000038037 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Yoshimura A, Ohkubo T, Kiguchi T, Jenkins NA, Gilbert DJ, Copeland NG, Hara T, Miyajima A (June 1995). "A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors". The EMBO Journal. 14 (12): 2816–26. doi:10.1002/j.1460-2075.1995.tb07281.x. PMC   398400 . PMID   7796808.
  6. Minamoto S, Ikegame K, Ueno K, Narazaki M, Naka T, Yamamoto H, Matsumoto T, Saito H, Hosoe S, Kishimoto T (August 1997). "Cloning and functional analysis of new members of STAT induced STAT inhibitor (SSI) family: SSI-2 and SSI-3". Biochemical and Biophysical Research Communications. 237 (1): 79–83. doi:10.1006/bbrc.1997.7080. PMID   9266833.
  7. "OrthoMaM phylogenetic marker: SOCS1 coding sequence".
  8. "Entrez Gene: SOCS1 suppressor of cytokine signaling 1".
  9. 1 2 Charoenthongtrakul S, Zhou Q, Shembade N, Harhaj NS, Harhaj EW (July 2011). "Human T cell leukemia virus type 1 Tax inhibits innate antiviral signaling via NF-kappaB-dependent induction of SOCS1". Journal of Virology. 85 (14): 6955–62. doi:10.1128/JVI.00007-11. PMC   3126571 . PMID   21593151.
  10. De Sepulveda P, Okkenhaug K, Rose JL, Hawley RG, Dubreuil P, Rottapel R (February 1999). "Socs1 binds to multiple signalling proteins and suppresses steel factor-dependent proliferation". The EMBO Journal. 18 (4): 904–15. doi:10.1093/emboj/18.4.904. PMC   1171183 . PMID   10022833.
  11. Bourette RP, De Sepulveda P, Arnaud S, Dubreuil P, Rottapel R, Mouchiroud G (June 2001). "Suppressor of cytokine signaling 1 interacts with the macrophage colony-stimulating factor receptor and negatively regulates its proliferation signal". The Journal of Biological Chemistry. 276 (25): 22133–9. doi: 10.1074/jbc.M101878200 . PMID   11297560.
  12. Ram PA, Waxman DJ (December 1999). "SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms". The Journal of Biological Chemistry. 274 (50): 35553–61. doi: 10.1074/jbc.274.50.35553 . PMID   10585430.
  13. Rui L, Yuan M, Frantz D, Shoelson S, White MF (November 2002). "SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2". The Journal of Biological Chemistry. 277 (44): 42394–8. doi: 10.1074/jbc.C200444200 . PMID   12228220.
  14. Yasukawa H, Misawa H, Sakamoto H, Masuhara M, Sasaki A, Wakioka T, Ohtsuka S, Imaizumi T, Matsuda T, Ihle JN, Yoshimura A (March 1999). "The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop". The EMBO Journal. 18 (5): 1309–20. doi:10.1093/emboj/18.5.1309. PMC   1171221 . PMID   10064597.
  15. Dif F, Saunier E, Demeneix B, Kelly PA, Edery M (December 2001). "Cytokine-inducible SH2-containing protein suppresses PRL signaling by binding the PRL receptor". Endocrinology. 142 (12): 5286–93. doi: 10.1210/endo.142.12.8549 . PMID   11713228.
  16. Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H, Miyazaki T, Leonor N, Taniguchi T, Fujita T, Kanakura Y, Komiya S, Yoshimura A (June 1997). "A new protein containing an SH2 domain that inhibits JAK kinases". Nature. 387 (6636): 921–4. Bibcode:1997Natur.387..921E. doi: 10.1038/43213 . PMID   9202126. S2CID   4347361.
  17. Pezet A, Favre H, Kelly PA, Edery M (August 1999). "Inhibition and restoration of prolactin signal transduction by suppressors of cytokine signaling". The Journal of Biological Chemistry. 274 (35): 24497–502. doi: 10.1074/jbc.274.35.24497 . PMID   10455112.
  18. Ungureanu D, Saharinen P, Junttila I, Hilton DJ, Silvennoinen O (May 2002). "Regulation of Jak2 through the ubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1". Molecular and Cellular Biology. 22 (10): 3316–26. doi:10.1128/mcb.22.10.3316-3326.2002. PMC   133778 . PMID   11971965.
  19. Masuhara M, Sakamoto H, Matsumoto A, Suzuki R, Yasukawa H, Mitsui K, Wakioka T, Tanimura S, Sasaki A, Misawa H, Yokouchi M, Ohtsubo M, Yoshimura A (October 1997). "Cloning and characterization of novel CIS family genes". Biochemical and Biophysical Research Communications. 239 (2): 439–46. doi:10.1006/bbrc.1997.7484. PMID   9344848.
  20. Ohya K, Kajigaya S, Yamashita Y, Miyazato A, Hatake K, Miura Y, Ikeda U, Shimada K, Ozawa K, Mano H (October 1997). "SOCS-1/JAB/SSI-1 can bind to and suppress Tec protein-tyrosine kinase". The Journal of Biological Chemistry. 272 (43): 27178–82. doi: 10.1074/jbc.272.43.27178 . PMID   9341160.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.