Thymidylate synthase (FAD)

Last updated
thymidylate synthase (FAD)
5ior.jpg
Flavin-dependent thymidylate synthase tetramer, Thermotoga maritima
Identifiers
EC no. 2.1.1.148
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a thymidylate synthase (FAD) (EC 2.1.1.148) is an enzyme that catalyzes the chemical reaction

Contents

5,10-methylenetetrahydrofolate + dUMP + FADH2 dTMP + tetrahydrofolate + FAD

The 3 substrates of this enzyme are 5,10-methylenetetrahydrofolate, dUMP, and FADH2, whereas its 3 products are dTMP, tetrahydrofolate, and FAD.

This enzyme belongs to the family of transferases, to be specific those transferring one-carbon group methyltransferases. The systematic name of this enzyme class is 5,10-methylenetetrahydrofolate,FADH2:dUMP C-methyltransferase. Other names in common use include Thy1, and ThyX. This enzyme participates in pyrimidine metabolism and one carbon pool by folate.

Most organisms, including humans, use the thyA- or TYMS-encoded classic thymidylate synthase whereas some bacteria use the similar flavin-dependent thymidylate synthase (FDTS) instead. [1]

Structural studies

As of late 2007, 3 structures have been solved for this class of enzymes, with PDB accession codes 2AF6, 2CFA, and 2GQ2.

See also

Related Research Articles

<span class="mw-page-title-main">Methylenetetrahydrofolate reductase</span> Rate-limiting enzyme in the methyl cycle

Methylenetetrahydrofolatereductase (MTHFR) is the rate-limiting enzyme in the methyl cycle, and it is encoded by the MTHFR gene. Methylenetetrahydrofolate reductase catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a cosubstrate for homocysteine remethylation to methionine. Natural variation in this gene is common in otherwise healthy people. Although some variants have been reported to influence susceptibility to occlusive vascular disease, neural tube defects, Alzheimer's disease and other forms of dementia, colon cancer, and acute leukemia, findings from small early studies have not been reproduced. Some mutations in this gene are associated with methylenetetrahydrofolate reductase deficiency. Complex I deficiency with recessive spastic paraparesis has also been linked to MTHFR variants. In addition, the aberrant promoter hypermethylation of this gene is associated with male infertility and recurrent spontaneous abortion.

<span class="mw-page-title-main">Flavin adenine dinucleotide</span> Redox-active coenzyme

In biochemistry, flavin adenine dinucleotide (FAD) is a redox-active coenzyme associated with various proteins, which is involved with several enzymatic reactions in metabolism. A flavoprotein is a protein that contains a flavin group, which may be in the form of FAD or flavin mononucleotide (FMN). Many flavoproteins are known: components of the succinate dehydrogenase complex, α-ketoglutarate dehydrogenase, and a component of the pyruvate dehydrogenase complex.

<span class="mw-page-title-main">Methionine synthase</span> Mammalian protein found in Homo sapiens

Methionine synthase also known as MS, MeSe, MTR is responsible for the regeneration of methionine from homocysteine. In humans it is encoded by the MTR gene (5-methyltetrahydrofolate-homocysteine methyltransferase). Methionine synthase forms part of the S-adenosylmethionine (SAMe) biosynthesis and regeneration cycle, and is the enzyme responsible for linking the cycle to one-carbon metabolism via the folate cycle. There are two primary forms of this enzyme, the Vitamin B12 (cobalamin)-dependent (MetH) and independent (MetE) forms, although minimal core methionine synthases that do not fit cleanly into either category have also been described in some anaerobic bacteria. The two dominant forms of the enzymes appear to be evolutionary independent and rely on considerably different chemical mechanisms. Mammals and other higher eukaryotes express only the cobalamin-dependent form. In contrast, the distribution of the two forms in Archaeplastida (plants and algae) is more complex. Plants exclusively possess the cobalamin-independent form, while algae have either one of the two, depending on species. Many different microorganisms express both the cobalamin-dependent and cobalamin-independent forms.

<span class="mw-page-title-main">HAT medium</span>

HAT Medium is a selection medium for mammalian cell culture, which relies on the combination of aminopterin, a drug that acts as a powerful folate metabolism inhibitor by inhibiting dihydrofolate reductase, with hypoxanthine and thymidine which are intermediates in DNA synthesis. The trick is that aminopterin blocks DNA de novo synthesis, which is absolutely required for cell division to proceed, but hypoxanthine and thymidine provide cells with the raw material to evade the blockage, provided that they have the right enzymes, which means having functioning copies of the genes that encode them.

<span class="mw-page-title-main">Thymidylate synthase</span> Enzyme

Thymidylate synthase (TS) is an enzyme that catalyzes the conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP). Thymidine is one of the nucleotides in DNA. With inhibition of TS, an imbalance of deoxynucleotides and increased levels of dUMP arise. Both cause DNA damage.

<span class="mw-page-title-main">Levomefolic acid</span> Chemical compound

Levomefolic acid (INN, also known as L-5-MTHF, L-methylfolate and L-5-methyltetrahydrofolate and (6S)-5-methyltetrahydrofolate, and (6S)-5-MTHF) is the primary biologically active form of folate used at the cellular level for DNA reproduction, the cysteine cycle and the regulation of homocysteine. It is also the form found in circulation and transported across membranes into tissues and across the blood–brain barrier. In the cell, L-methylfolate is used in the methylation of homocysteine to form methionine and tetrahydrofolate (THF). THF is the immediate acceptor of one carbon unit for the synthesis of thymidine-DNA, purines (RNA and DNA) and methionine. The un-methylated form, folic acid (vitamin B9), is a synthetic form of folate, and must undergo enzymatic reduction by dihydrofolate reductase (DHFR) to become biologically active.

<span class="mw-page-title-main">5,10-Methylenetetrahydrofolate</span> Chemical compound

5,10-Methylenetetrahydrofolate (N5,N10-Methylenetetrahydrofolate; 5,10-CH2-THF) is cofactor in several biochemical reactions. It exists in nature as the diastereoisomer [6R]-5,10-methylene-THF.

In enzymology, a methylenetetrahydrofolate-tRNA-(uracil-5-)-methyltransferase (EC 2.1.1.74) is an enzyme that catalyzes the chemical reaction

In enzymology, a tRNA (uracil-5-)-methyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">4-Hydroxyphenylacetate 3-monooxygenase</span> Class of enzymes

4-hydroxyphenylacetate 3-monooxygenase (EC 1.14.14.9) is an enzyme that catalyzes the chemical reaction

In enzymology, a methylenetetrahydrofolate dehydrogenase (NAD+) (EC 1.5.1.15) is an enzyme that catalyzes a chemical reaction.

In enzymology, a 3-methyl-2-oxobutanoate hydroxymethyltransferase (EC 2.1.2.11) is an enzyme that catalyzes the chemical reaction

In enzymology, a D-alanine 2-hydroxymethyltransferase (EC 2.1.2.7) is an enzyme that catalyzes the chemical reaction

In enzymology, a deoxycytidylate 5-hydroxymethyltransferase (EC 2.1.2.8) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">MTRR (gene)</span> Protein-coding gene in the species Homo sapiens

Methionine synthase reductase, also known as MSR, is an enzyme that in humans is encoded by the MTRR gene.

<span class="mw-page-title-main">MTHFD1</span>

MTHFD1 is a gene located in humans on chromosome 14 that encodes for a protein with three distinct enzymatic activities. C-1-tetrahydrofolate synthase, cytoplasmic also known as C1-THF synthase is an enzyme that in humans is encoded by the MTHFD1 gene.

Thymidylate synthase inhibitors are chemical agents which inhibit the enzyme thymidylate synthase and have potential as an anticancer chemotherapy. This inhibition prevents the methylation of C5 of deoxyuridine monophosphate (dUMP) thereby inhibiting the synthesis of deoxythymidine monophosphate (dTMP). The downstream effect is promotion of cell death because cells would not be able to properly undergo DNA synthesis if they are lacking dTMP, a necessary precursor to dTTP. Five agents were in clinical trials in 2002: raltitrexed, pemetrexed, nolatrexed, ZD9331, and GS7904L.

Rowena Green Matthews, born in 1938, is the G. Robert Greenberg Distinguished University professor emeritus at the University of Michigan, Ann Arbor. Her research focuses on the role of organic cofactors as partners of enzymes catalyzing difficult biochemical reactions, especially folic acid and cobalamin. Among other honors, she was elected to the National Academy of Sciences in 2002 and the Institute of Medicine in 2004.

<span class="mw-page-title-main">Fluorodeoxyuridylate</span> Chemical compound

Fluorodeoxyuridylate, also known as FdUMP, 5-fluoro-2'-deoxyuridylate, and 5-fluoro-2'-deoxyuridine 5'-monophosphate, is a molecule formed in vivo from 5-fluorouracil and 5-fluorodeoxyuridine.

Riboflavin-responsive exercise intolerance is a rare disorder caused by mutations of the SLC25A32 gene that encodes the mitochondrial folate transporter. Patients suffer from exercise intolerance and may have disrupted motor function.

References

  1. Koehn, E. M.; Perissinotti, L. L.; Moghram, S.; Prabhakar, A.; Lesley, S. A.; Mathews, I. I.; Kohen, A. (2012). "Folate binding site of flavin-dependent thymidylate synthase". Proceedings of the National Academy of Sciences. 109 (39): 15722–15727. Bibcode:2012PNAS..10915722K. doi: 10.1073/pnas.1206077109 . PMC   3465422 . PMID   23019356.