Tin(II) bromide

Last updated
Tin(II) bromide
part of an (SnBr2) chain in the solid state [1]
Other names
tin dibromide, stannous bromide
3D model (JSmol)
ECHA InfoCard 100.030.067 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 233-087-0
PubChem CID
  • InChI=1S/2BrH.Sn/h2*1H;/q;;+2/p-2 X mark.svgN
  • InChI=1/2BrH.Sn/h2*1H;/q;;+2/p-2
  • Br[Sn]Br
Molar mass 278.518 g/mol
Appearanceyellow powder
Density 5.12 g/cm3, solid
Melting point 215 °C (419 °F; 488 K)
Boiling point 639 °C (1,182 °F; 912 K)
related to PbCl2
GHS labelling: [2]
P260, P264, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P363, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

Tin(II) bromide is a chemical compound of tin and bromine with a chemical formula of SnBr2. Tin is in the +2 oxidation state. The stability of tin compounds in this oxidation state is attributed to the inert pair effect. [3]


Structure and bonding

In the gas phase SnBr2 is non-linear with a bent configuration similar to SnCl2 in the gas phase. The Br-Sn-Br angle is 95° and the Sn-Br bond length is 255pm. [4] There is evidence of dimerisation in the gaseous phase. [5] The solid state structure is related to that of SnCl2 and PbCl2 and the tin atoms have five near bromine atom neighbours in an approximately trigonal bipyramidal configuration. [6] Two polymorphs exist: a room-temperature orthorhombic polymorph, and a high-temperature hexagonal polymorph. Both contain (SnBr2) chains but the packing arrangement differs. [1]

orthorhombic polymorph [1] [7]
hexagonal polymorph [1] [8]


Tin(II) bromide can be prepared by the reaction of metallic tin and HBr distilling off the H2O/HBr and cooling: [9]

Sn + 2 HBr → SnBr2 + H2

However, the reaction will produce tin (IV) bromide in the presence of oxygen.


SnBr2 is soluble in donor solvents such as acetone, pyridine and dimethylsulfoxide to give pyramidal adducts. [9]
A number of hydrates are known, 2SnBr2·H2O, 3SnBr2·H2O & 6SnBr2·5H2O which in the solid phase have tin coordinated by a distorted trigonal prism of 6 bromine atoms with Br or H2O capping 1 or 2 faces. [3] When dissolved in HBr the pyramidal SnBr3 ion is formed. [3] Like SnCl2 it is a reducing agent. With a variety of alkyl bromides oxidative addition can occur to yield the alkyltin tribromide [10] e.g.

SnBr2 + RBr → RSnBr3

Tin(II) bromide can act as a Lewis acid forming adducts with donor molecules e.g. trimethylamine where it forms NMe3·SnBr2 and 2NMe3·SnBr2 [11] It can also act as both donor and acceptor in, for example, the complex F3B·SnBr2·NMe3 where it is a donor to boron trifluoride and an acceptor to trimethylamine. [12]

Related Research Articles

Bromine Chemical element, symbol Br and atomic number 35

Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest halogen, and is a volatile red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between those of chlorine and iodine. Isolated independently by two chemists, Carl Jacob Löwig and Antoine Jérôme Balard, its name was derived from the Ancient Greek βρῶμος ("stench"), referring to its sharp and pungent smell.

Hydrogen bromide Chemical compound

Hydrogen bromide is the inorganic compound with the formula HBr. It is a hydrogen halide consisting of hydrogen and bromine. A colorless gas, it dissolves in water, forming hydrobromic acid, which is saturated at 68.85% HBr by weight at room temperature. Aqueous solutions that are 47.6% HBr by mass form a constant-boiling azeotrope mixture that boils at 124.3 °C. Boiling less concentrated solutions releases H2O until the constant-boiling mixture composition is reached.

Phosphorus tribromide Chemical compound

Phosphorus tribromide is a colourless liquid with the formula PBr3. The liquid fumes in moist air due to hydrolysis and has a penetrating odour. It is used in the laboratory for the conversion of alcohols to alkyl bromides.

Organotin compounds or stannanes are chemical compounds based on tin with hydrocarbon substituents. Organotin chemistry is part of the wider field of organometallic chemistry. The first organotin compound was diethyltin diiodide ((C2H5)2SnI2), discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn-C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.

Aluminium bromide Chemical compound

Aluminium bromide is any chemical compound with the empirical formula AlBrx. Aluminium tribromide is the most common form of aluminium bromide. It is a colorless, sublimable hygroscopic solid; hence old samples tend to be hydrated, mostly as aluminium tribromide hexahydrate (AlBr3·6H2O).

Molybdenum(V) chloride Chemical compound

Molybdenum(V) chloride is the inorganic compound with the formula [MoCl5]2. This dark volatile solid is used in research to prepare other molybdenum compounds. It is moisture-sensitive and soluble in chlorinated solvents. Usually called molybdenum pentachloride, it is in fact a dimer with the formula Mo2Cl10.

Gold(III) bromide Chemical compound

Gold(III) bromide is a dark-red to black crystalline solid. It has the empirical formula AuBr3, but exists primarily as a dimer with the molecular formula Au2Br6 in which two gold atoms are bridged by two bromine atoms. It is commonly referred to as gold(III) bromide, gold tribromide, and rarely but traditionally auric bromide, and sometimes as digold hexabromide. As is similar with the other gold halides, this compound is unique for being a coordination complex of a group 11 transition metal that is stable in an oxidation state of three whereas copper or silver complexes persist in oxidation states of one or two.

Gallium(III) bromide Chemical compound

Gallium(III) bromide (GaBr3) is a chemical compound, and one of four gallium trihalides.

Selenium tetrafluoride Chemical compound

Selenium tetrafluoride (SeF4) is an inorganic compound. It is a colourless liquid that reacts readily with water. It can be used as a fluorinating reagent in organic syntheses (fluorination of alcohols, carboxylic acids or carbonyl compounds) and has advantages over sulfur tetrafluoride in that milder conditions can be employed and it is a liquid rather than a gas.

Titanium tetrabromide Chemical compound

Titanium tetrabromide is the chemical compound with the formula TiBr4. It is the most volatile transition metal bromide. The properties of TiBr4 are an average of TiCl4 and TiI4. Some key properties of these four-coordinated Ti(IV) species are their high Lewis acidity and their high solubility in nonpolar organic solvents. TiBr4 is diamagnetic, reflecting the d0 configuration of the metal centre.

Tungsten(V) bromide Chemical compound

Tungsten(V) bromide is the inorganic compound with the empirical formula WBr5. The compound consists of bioctahedral structure, with two bridging bromide ligands, so its molecular formula is W2Br10.

Indium(III) bromide Chemical compound

Indium(III) bromide, (indium tribromide), InBr3, is a chemical compound of indium and bromine. It is a Lewis acid and has been used in organic synthesis.

There are three sets of Indium halides, the trihalides, the monohalides, and several intermediate halides. In the monohalides the oxidation state of indium is +1 and their proper names are indium(I) fluoride, indium(I) chloride, indium(I) bromide and indium(I) iodide.

Indium(I) bromide Chemical compound

Indium(I) bromide is a chemical compound of indium and bromine. It is a red crystalline compound that is isostructural with β-TlI and has a distorted rock salt structure. Indium(I) bromide is generally made from the elements, heating indium metal with InBr3. It has been used in the sulfur lamp. In organic chemistry, it has been found to promote the coupling of α, α-dichloroketones to 1-aryl-butane-1,4-diones. Oxidative addition reactions with for example alkyl halides to give alkyl indium halides and with NiBr complexes to give Ni-In bonds are known. It is unstable in water decomposing into indium metal and indium tribromide. When indium dibromide is dissolved in water, InBr is produced as a, presumably, insoluble red precipitate, that then rapidly decomposes.

Silicon tetrabromide Chemical compound

Silicon tetrabromide is the inorganic compound with the formula SiBr4. This colorless liquid has a suffocating odor due to its tendency to hydrolyze with release of hydrogen bromide. The general properties of silicon tetrabromide closely resemble those of the more commonly used silicon tetrachloride.

Organobromine compounds, also called organobromides, are organic compounds that contain carbon bonded to bromine. The most pervasive is the naturally produced bromomethane.

Molecular oxohalides (oxyhalides) are a group of chemical compounds in which both oxygen and halogen atoms are attached to another chemical element A in a single molecule. They have the general formula AOmXn, X = F, Cl, Br, I. The element A may be a main group element, a transition element or an actinide. The term oxohalide, or oxyhalide, may also refer to minerals and other crystalline substances with the same overall chemical formula, but having an ionic structure.

Titanium(III) bromide is the inorganic compound with the formula TiBr3. It is a blue black paramagnetic solid with a reddish reflection. It has few applications, although it is a catalyst for the polymerization of alkenes.

Selenium tetrabromide is an inorganic compound with a chemical formula SeBr4.

Californium(III) bromide Chemical compound

Californium(III) bromide is an inorganic compound, a salt with a chemical formula CfBr3. Like in californium oxide (Cf2O3) and other californium halides, including californium(III) fluoride (CfF3), californium(III) chloride, and californium(III) iodide (CfI3), the californium atom has an oxidation state of +3.


  1. 1 2 3 4 Eckold, Pierre; Hügel, Werner; Dinnebier, Robert E.; Niewa, Rainer (2005). "Two Modifications of Tin(II) Bromide". Z. Anorg. Allg. Chem. 641 (8–9): 1467–1472. doi:10.1002/zaac.201500108.
  2. "Tin(II) bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 12 December 2021.
  3. 1 2 3 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  4. J.L Wardell "Tin:Inorganic Chemistry" Encyclopedia of Inorganic Chemistry Ed: R Bruce King John Wiley & Sons (1994) ISBN   0-471-93620-0
  5. K. Hilpert; M. Miller; F. Ramondo (1991). "Thermochemistry of tetrabromoditin and bromoiodotin gaseous". J. Phys. Chem. 95 (19): 7261–7266. doi:10.1021/j100172a031.
  6. Abrahams I.; Demetriou D.Z. (2000). "Inert Pair Effects in Tin and Lead Dihalides: Crystal Structure of Tin(II) Bromide". Journal of Solid State Chemistry. 149 (1): 28–32. Bibcode:2000JSSCh.149...28A. doi:10.1006/jssc.1999.8489.
  7. "ICSD Entry: 429132". Cambridge Structural Database: Access Structures. Cambridge Crystallographic Data Centre . Retrieved 2022-02-09.
  8. "ICSD Entry: 429133". Cambridge Structural Database: Access Structures. Cambridge Crystallographic Data Centre. Retrieved 2022-02-09.
  9. 1 2 Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred (1999), Advanced Inorganic Chemistry (6th ed.), New York: Wiley-Interscience, ISBN   0-471-19957-5
  10. Bulten E.J. (1975). "A convenient synthesis of (C1-C18) alkyltin tribromides". Journal of Organometallic Chemistry. 97 (1): 167–172. doi:10.1016/S0022-328X(00)89463-2. hdl: 1874/15985 .
  11. Chung Chun Hsu & R. A. Geanangel (1977). "Synthesis and studies of trimethylamine adducts with tin(II) halides". Inorg. Chem. 16 (1): 2529–2534. doi:10.1021/ic50176a022.
  12. Chung Chun Hsu & R. A. Geanangel (1980). "Donor and acceptor behavior of divalent tin compounds". Inorg. Chem. 19 (1): 110–119. doi:10.1021/ic50203a024.