Tropical cyclone observation

Last updated
Surface weather map of the 1935 Labor Day hurricane moving up the west coast of Florida Labor Day hurricane 1935-09-04 weather map.gif
Surface weather map of the 1935 Labor Day hurricane moving up the west coast of Florida

Tropical cyclone observation has been carried out over the past couple of centuries in various ways. The passage of typhoons, hurricanes, as well as other tropical cyclones have been detected by word of mouth from sailors recently coming to port or by radio transmissions from ships at sea, from sediment deposits in near shore estuaries, to the wiping out of cities near the coastline. Since World War II, advances in technology have included using planes to survey the ocean basins, satellites to monitor the world's oceans from outer space using a variety of methods, radars to monitor their progress near the coastline, and recently the introduction of unmanned aerial vehicles to penetrate storms. Recent studies have concentrated on studying hurricane impacts lying within rocks or near shore lake sediments, which are branches of a new field known as paleotempestology. This article details the various methods employed in the creation of the hurricane database, as well as reconstructions necessary for reanalysis of past storms used in projects such as the Atlantic hurricane reanalysis.

World War II 1939–1945 global war

World War II, also known as the Second World War, was a global war that lasted from 1939 to 1945. The vast majority of the world's countries—including all the great powers—eventually formed two opposing military alliances: the Allies and the Axis. A state of total war emerged, directly involving more than 100 million people from over 30 countries. The major participants threw their entire economic, industrial, and scientific capabilities behind the war effort, blurring the distinction between civilian and military resources. World War II was the deadliest conflict in human history, marked by 50 to 85 million fatalities, most of whom were civilians in the Soviet Union and China. It included massacres, the genocide of the Holocaust, strategic bombing, premeditated death from starvation and disease, and the only use of nuclear weapons in war.

Outer space Void between celestial bodies

Outer space, or just space, is the expanse that exists beyond the Earth and between celestial bodies. Outer space is not completely empty—it is a hard vacuum containing a low density of particles, predominantly a plasma of hydrogen and helium, as well as electromagnetic radiation, magnetic fields, neutrinos, dust, and cosmic rays. The baseline temperature, as set by the background radiation from the Big Bang, is 2.7 kelvins. The plasma between galaxies accounts for about half of the baryonic (ordinary) matter in the universe; it has a number density of less than one hydrogen atom per cubic metre and a temperature of millions of kelvins; local concentrations of this plasma have condensed into stars and galaxies. Studies indicate that 90% of the mass in most galaxies is in an unknown form, called dark matter, which interacts with other matter through gravitational but not electromagnetic forces. Observations suggest that the majority of the mass-energy in the observable universe is a poorly understood vacuum energy of space, which astronomers label dark energy. Intergalactic space takes up most of the volume of the universe, but even galaxies and star systems consist almost entirely of empty space.

Paleotempestology The study of past tropical cyclone activity using geological proxies and historical documents

Paleotempestology is the study of past tropical cyclone activity by means of geological proxies as well as historical documentary records. The term was coined by Kerry Emanuel.

Contents

Geological markers of past activity

Stalagmites in caves

Recent studies of the 18O and 13C isotopes found in stalagmites in Belize show that tropical cyclone events can leave markers that can be separated out on a week-by-week basis. The error rate of this type of microanalysis was 1 error in 1,200 sampling points. [1]

Oxygen-18 is a natural, stable isotope of oxygen and one of the environmental isotopes.

Carbon-13 (13C) is a natural, stable isotope of carbon with a nucleus containing six protons and seven neutrons. As one of the environmental isotopes, it makes up about 1.1% of all natural carbon on Earth.

Stalagmite elongated mineral formation which forms on a cave floor

A stalagmite is a type of rock formation that rises from the floor of a cave due to the accumulation of material deposited on the floor from ceiling drippings. Stalagmites may be composed of lava, minerals, mud, peat, pitch, sand, sinter and amberat.

Markers in coral

Rocks contain certain isotopes of elements, known as natural tracers, which describe the conditions under which they formed. By studying the calcium carbonate in coral rock, past sea surface temperature and hurricane information can be revealed. Lighter oxygen isotopes (16O) are left behind in coral during periods of very heavy rainfall. [2] Since hurricanes are the main source of extreme rainfall in the tropical oceans, past hurricane events can be dated to the days of their impact on the coral by looking at the increased 18O concentration within the coral. [3]

Sediment deposition in coastal lakes

Kam Biu-Liu, a professor at Louisiana State University, has been studying sediment lying at the bottom of coastal lakes and marshes in order to study the frequency and intensity of hurricanes over the past 5,000 years. [4] Since storm surges sweep coastal sands with them as they progress inland, a layer of sand is left behind in coastal lakes and marshes. Radiocarbon dating is then used to date the layers. [5]

Louisiana State University university in Baton Rouge, Louisiana, USA

Louisiana State University is a public research university in Baton Rouge, Louisiana. The university was founded in 1853 in what is now known as Pineville, Louisiana, under the name Louisiana State Seminary of Learning & Military Academy. The current LSU main campus was dedicated in 1926, consists of more than 250 buildings constructed in the style of Italian Renaissance architect Andrea Palladio, and occupies a 650-acre (2.6 km²) plateau on the banks of the Mississippi River.

Radiocarbon dating is a method for determining the age of an object containing organic material by using the properties of radiocarbon, a radioactive isotope of carbon.

Newspapers

Before the invention of the telegraph in the early to mid-19th century, news was as fast as the quickest horse, stage, or ship. Normally, there was no advance warning of a tropical cyclone impact. However, the situation changed in the 19th century as seafaring people and land-based researchers, such as Father Viñes in Cuba, came up with systematic methods of reading the sky's appearance or the sea state, which could foretell a tropical cyclone's approach up to a couple days in advance.

Cuba Country in the Caribbean

Cuba, officially the Republic of Cuba, is a country comprising the island of Cuba as well as Isla de la Juventud and several minor archipelagos. Cuba is located in the northern Caribbean where the Caribbean Sea, Gulf of Mexico and Atlantic Ocean meet. It is east of the Yucatán Peninsula (Mexico), south of both the U.S. state of Florida and the Bahamas, west of Haiti and north of both Jamaica and the Cayman Islands. Havana is the largest city and capital; other major cities include Santiago de Cuba and Camagüey. The area of the Republic of Cuba is 110,860 square kilometres (42,800 sq mi). The island of Cuba is the largest island in Cuba and in the Caribbean, with an area of 105,006 square kilometres (40,543 sq mi), and the second-most populous after Hispaniola, with over 11 million inhabitants.

In China, the abundance of historical documentary records in the form of Fang Zhi (semiofficial local gazettes) offers an extraordinary opportunity for providing a high-resolution historical dataset for the frequency of typhoon strikes. Kam-biu Liu et al. (2001) reconstructed a 1,000-year time series of typhoon landfalls in the Guangdong Province of southern China since AD 975 and found that on a decadal timescale, the twenty-year interval from AD 1660 to 1680 is the most active period on record, with twenty-eight to thirty-seven typhoon landfalls per decade. The variability in typhoon landfalls in Guangdong mimics that observed in other paleoclimatic proxies (e.g., tree rings, ice cores) from China and the northern hemisphere. Remarkably, the two periods of most frequent typhoon strikes in Guangdong (AD 1660-1680, 1850–1880) coincide with two of the coldest and driest periods in northern and central China during the Little Ice Age. [6]

China State in East Asia

China, officially the People's Republic of China (PRC), is a country in East Asia and the world's most populous country, with a population of around 1.404 billion. Covering approximately 9,600,000 square kilometers (3,700,000 sq mi), it is the third- or fourth-largest country by total area. Governed by the Communist Party of China, the state exercises jurisdiction over 22 provinces, five autonomous regions, four direct-controlled municipalities, and the special administrative regions of Hong Kong and Macau.

Little Ice Age A period of cooling that occurred after the Medieval Warm Period

The Little Ice Age (LIA) was a period of cooling that occurred after the Medieval Warm Period. Although it was not a true ice age, the term was introduced into scientific literature by François E. Matthes in 1939. It has been conventionally defined as a period extending from the 16th to the 19th centuries, but some experts prefer an alternative timespan from about 1300 to about 1850.

Surface observations

1933 Atlantic hurricane season map.png
2005 Atlantic hurricane season map.png
Maps of the 1933 and 2005 Atlantic hurricane season, the two most active on the record. 28 storms formed in 2005 of which 17 made landfall, while 19 of 21 detected storms formed in 1933 hit the coast. Note that no hurricane was detected on Mid-Atlantic in 1933.

Ship reports

For centuries, people have sailed the world's oceans and seas, and for just as long, they have encountered storms. The worst of the cyclones over the open seas likely took those that observed them into the depths of the oceans. However, some did survive to report harrowing tales. Before the invention of the wireless telegraph in 1905, reports about storms at sea either coincided with their arrival at the coast as ships scrambled into port, or came weeks and months afterwards from remote ports of call. Ship and buoy reports, available since the 1970s, are used in real-time not only for their temperature, pressure, and wind measurements, but also for their sea surface temperature and wave height measurements.

Wind reports from ships at sea have become increasingly based on anemometers, and less so on the Beaufort Scale. This is important to note as the Beaufort Scale underestimates winds at higher wind speeds, indicating ship wind observations taken for older storms are likely to underrepresent their true value. [7]

As Christopher Landsea et al. point out, many tropical cyclones that formed on the open sea and did not affect any coast usually went undetected prior to satellite observation since the 1970s. They estimated an undercount bias of zero to six tropical cyclones per year between 1851 and 1885 and zero to four per year between 1886 and 1910. These undercounts roughly take into account the typical size of tropical cyclones, the density of shipping tracks over the Atlantic basin, and the amount of populated coastline. [8]

Land-based observations

In the early 20th century, forecasting the track of cyclones was still confined to areas of the greatest surface pressure falls, based upon surface weather observations, and climatology. These methods proved to be the cutting edge of tropical cyclone forecasting through the mid 20th century. Land-based surface observations remain invaluable as a source of real-time information at locations near the coastline and inland. Combined with ship observations and newspapers, they formed the total information network for hurricane detection until radiosondes were introduced in 1941 and reconnaissance aircraft began in 1944. [7] Land-based observations of pressure and wind can show how quickly a tropical cyclone is decaying as it moves inland. Their rainfall reports show where significant rainfall is occurring, and can be an alert for possible flooding. With the establishment of the ASOS network in the United States during the 1990s, more locations are reporting around the clock than ever before. [9]

Mobile platforms

Since the 1990s, academic researchers have begun to deploy mobile weather stations fortified to withstand hurricane-force winds. The two largest programs are the Florida Coastal Monitoring Program [10] and the Wind Engineering Mobile Instrumented Tower Experiment. [11] During landfall, the NOAA Hurricane Research Division compares and verifies data from reconnaissance aircraft, including wind speed data taken at flight level and from GPS dropwindsondes and stepped-frequency microwave radiometers, to wind speed data transmitted in real time from weather stations erected near or at the coast. The National Hurricane Center uses the data to evaluate conditions at landfall and to verify forecasts.

Upper air observations

Reconnaissance aircraft

The idea of aircraft reconnaissance of tropical cyclones first was put forth by Captain W. L. Farnsworth of the Galveston Commercial Association in the early 1930s. Supported by the United States Weather Bureau, it passed both the United States Senate and United States House of Representatives in 1936. [12] Since 1944, aircraft have been flying out to sea to find tropical cyclones. Before regular satellite coverage, this was a hit-or-miss affair. Thereafter, aircraft flights into tropical systems became more targeted and precise. Nowadays, a C-130 is used as a hurricane hunter by the Air Force, while the P-3 Orion is used by the National Oceanic and Atmospheric Administration for research projects used to better understand tropical cyclones and improve hurricane forecasts. [9] The implementation of synoptic observation missions by a Gulfstream jet, where dropwindsondes are used to investigate a tropical cyclone's environment, has led to a 15-20 percent reduction in track forecast errors where such missions were present. [13]

Historical aircraft used for weather and hurricane tracking include:

In Canada, the Convair 580 is used by National Research Council to track hurricanes. [14]

Unmanned aerial vehicles

The era of the aerosonde began in 1998, when the Australian Bureau of Meteorology flew an aerosonde into Tropical Cyclone Tiffany. [13] In 2005, Hurricane Ophelia became the first Atlantic tropical cyclone where an unmanned aerial vehicle, known as an aerosonde, mission was used for a tropical cyclone. The first typhoon was penetrated by an aerosonde in 2005 as well. Unlike normal reconnaissance flights, the aerosonde stayed near the surface after a 10-hour flight within the tropical cyclone. [15]

Remote sensing

Radar

Radar image of Hurricane Erika making landfall over Northeastern Mexico Hurricane Erika 2003 Radar.jpg
Radar image of Hurricane Erika making landfall over Northeastern Mexico

During World War II, radar technology was developed to detect aircraft. It soon became apparent that large areas became obscured when significant weather was in the area. In 1957, the National Weather Service established the United States' first radar network to cover the coastline and act as first warning of an impending tropical cyclone. Upgraded in the 1990s to use doppler technology, radar can provide rainfall estimates, wind estimates, possible locations of tornadoes within a system's spiral bands, as well as the center location of a tropical cyclone. [9] The United States operates with a network of 158 Doppler Radars across the country. [16]

Satellite

Beginning with the launching of TIROS-I in April 1960, satellites have been used to look for tropical cyclones. The Dvorak technique was developed from early satellite images of tropical cyclones to determine real-time a tropical cyclone's strength from characteristics seen on satellite imagery. In most tropical cyclone basins, use of the satellite-based Dvorak technique is the primary method used to determine a tropical cyclone's maximum sustained winds. The extent of banding and difference in temperature between the eye and eyewall is used within the technique to assign a maximum sustained wind and pressure. [17] Since the mid-1990s, microwave imagery has been able to determine the center of rotation when that center is obscured by mid to high level cloudiness. Cloud top temperatures are used in real-time to estimate rainfall rates within the cyclone. [9]

Satellite Images of Selected Tropical Storms and Associated T-Number using Dvorak technique
Wilma-17-1315z-T30-discussion1500z.png Dennis-06-1445z-T40-discussion1500z.png Jeanne-22-1945z-T50-discussion2100z.png Emily-14-1915z-T60-discussion15-0300z.png
Tropical Storm Wilma at T3.0 Tropical Storm Dennis at T4.0 Hurricane Jeanne at T5.0 Hurricane Emily at T6.0

See also

Related Research Articles

Hurricane hunters

Hurricane hunters are aircrews that fly into tropical cyclones in the North Atlantic Ocean and Northeastern Pacific Ocean to gather weather data. Currently, the US organizations that fly these missions are the United States Air Force Reserve's 53d Weather Reconnaissance Squadron and the National Oceanic and Atmospheric Administration's Hurricane Hunters. Such missions have also been flown by Navy units and other Air Force and NOAA units.

2002 Atlantic hurricane season Summary of the relevant tropical storms

The 2002 Atlantic hurricane season was a borderline-average Atlantic hurricane season. It officially started on June 1, 2002 and ended on November 30, dates which conventionally limit the period of each year when most tropical cyclones develop in the Atlantic Ocean. The season produced fourteen tropical cyclones, of which twelve developed into named storms; four became hurricanes, and two attained major hurricane status. While the season's first cyclone did not develop until July 14, activity quickly picked up; the 2002 season tied with 2010 in which a record number of tropical storms, eight, developed in the month of September. It ended early however, with no tropical storms forming after October 6—a rare occurrence caused partly by El Niño conditions. The most intense hurricane of the season was Hurricane Isidore with a minimum central pressure of 934 mbar, although Hurricane Lili attained higher winds and peaked at Category 4 whereas Isidore only reached Category 3. The season's low activity is reflected in the low cumulative accumulated cyclone energy (ACE) rating of 67. ACE is, broadly speaking, a measure of the power of the hurricane multiplied by the length of time it existed, so low number reflects the small number of strong storms and preponderance of tropical storms.

2000 Atlantic hurricane season hurricane season in the Atlantic Ocean

The 2000 Atlantic hurricane season was the first Atlantic hurricane season without a tropical cyclone in the month of July since 1993. The hurricane season officially began on June 1, and ended on November 30. It was slightly above average due to a La Niña weather pattern although most of the storms were weak. The first cyclone, Tropical Depression One, developed in the southern Gulf of Mexico on June 7 and dissipated after an uneventful duration. However, it would be almost two months before the first named storm, Alberto, formed near Cape Verde; Alberto also dissipated with no effects on land. Several other tropical cyclones—Tropical Depression Two, Tropical Depression Four, Chris, Ernesto, Nadine, and an unnamed subtropical storm—did not impact land. Five additional storms—Tropical Depression Nine, Florence, Isaac, Joyce, and Leslie—minimally affected land areas.

1975 Atlantic hurricane season hurricane season in the Atlantic Ocean

The 1975 Atlantic hurricane season featured the first tropical storm to be upgraded to a hurricane based solely on satellite imagery – Hurricane Doris. The season officially began on June 1 and lasted until November 30. These dates conventionally delimit the period of each year when most tropical cyclones form in the Atlantic basin. The season was near average, with nine tropical storms forming, of which six became hurricanes. Three of those six became major hurricanes, which are Category 3 or higher on the Saffir–Simpson scale. The first system, Tropical Depression One, developed on June 24. Tropical Storm Amy in July caused minor beach erosion and coastal flooding from North Carolina to New Jersey, and killed one person when a ship capsized offshore North Carolina. Hurricane Blanche brought strong winds to portions of Atlantic Canada, leaving about $6.2 million (1975 USD) in damage. Hurricane Caroline brought high tides and flooding to northeastern Mexico and Texas, with two drownings in the latter.

Tropical cyclone warnings and watches are two levels of alert issued by national weather forecasting bodies to coastal areas threatened by the imminent approach of a tropical cyclone of tropical storm or hurricane intensity. They are notices to the local population and civil authorities to make appropriate preparation for the cyclone, including evacuation of vulnerable areas where necessary. It is important that interests throughout the area of an alert make preparations to protect life and property, and do not disregard it on the strength of the detailed forecast track. Tropical cyclones are not points, and forecasting their track remains an uncertain science.

2006 Atlantic hurricane season Summary of the relevant tropical storms

The 2006 Atlantic hurricane season was the least active since 1997 as well as the first season since 2001 in which no hurricanes made landfall in the United States, and was the first since 1994 in which no tropical cyclones formed during October. Following the intense activity of 2005, forecasters predicted that the 2006 season would be only slightly less active. Instead activity was slowed by a rapidly forming moderate El Niño event, the presence of the Saharan Air Layer over the tropical Atlantic, and the steady presence of a robust secondary high-pressure area to the Azores high centered on Bermuda. There were no tropical cyclones after October 2.

1993 Pacific hurricane season hurricane season in the Pacific Ocean

The 1993 Pacific hurricane season was a slightly above-average Pacific hurricane season with seven named storms directly impacting land. The season officially started on May 15 in the eastern Pacific, and on June 1 in the central Pacific, and ended on November 30; these dates conventionally delimit the period during which most tropical cyclones form in the northeastern Pacific Ocean. The first tropical cyclone developed on June 11, over a month after the traditional start of the season. The final named storm of the season, Tropical Storm Norma, dissipated on October 14. The Central Pacific Ocean saw very little tropical activity, with only one cyclone, Hurricane Keoni, developing in that particular region. However, many storms out of the season crossed the threshold into the Central Pacific, many as hurricanes, and even major hurricanes.

2008 Atlantic hurricane season hurricane season in the Atlantic Ocean

The 2008 Atlantic hurricane season was the most disastrous Atlantic hurricane season since 2005, causing over 1,000 deaths and nearly $50 billion in damages. It was an above-average season, featuring sixteen named storms, eight of which became hurricanes, and five which further became major hurricanes, the highest number since the record-breaking 2005 season. It officially started on June 1 and ended on November 30. These dates conventionally delimit the period of each year when most tropical cyclones form in the Atlantic basin. However, the formation of Tropical Storm Arthur caused the season to start one day early. This season is the fifth most costly on record, behind only the 2004, 2005, 2012 and 2017 seasons, with over $49.5 billion in damage. It was the only year on record in which a major hurricane existed in every month from July through November in the North Atlantic.Bertha became the longest-lived July tropical cyclone on record for the basin, the first of several long-lived systems during 2008.

Pacific hurricane mature tropical cyclone that develops within the eastern and central Pacific Ocean

A Pacific hurricane is a mature tropical cyclone that develops within the eastern and central Pacific Ocean to the east of 180°W, north of the equator. For tropical cyclone warning purposes, the northern Pacific is divided into three regions: the eastern, central, and western, while the southern Pacific is divided into 2 sections, the Australian region and the southern Pacific basin between 160°E and 120°W. Identical phenomena in the western north Pacific are called typhoons. This separation between the two basins has a practical convenience, however, as tropical cyclones rarely form in the central north Pacific due to high vertical wind shear, and few cross the dateline.

Typhoon type of tropical cyclone

A typhoon is a mature tropical cyclone that develops between 180° and 100°E in the Northern Hemisphere. This region is referred to as the Northwestern Pacific Basin, and is the most active tropical cyclone basin on Earth, accounting for almost one-third of the world's annual tropical cyclones. For organizational purposes, the northern Pacific Ocean is divided into three regions: the eastern, central, and western. The Regional Specialized Meteorological Center (RSMC) for tropical cyclone forecasts is in Japan, with other tropical cyclone warning centers for the northwest Pacific in Hawaii, the Philippines and Hong Kong. While the RSMC names each system, the main name list itself is coordinated among 18 countries that have territories threatened by typhoons each year A hurricane is a storm that occurs in the Atlantic Ocean or the northeastern Pacific Ocean, a typhoon occurs in the northwestern Pacific Ocean, and a tropical cyclone occurs in the South Pacific or the Indian Ocean.

Atlantic hurricane tropical cyclone that forms in the North Atlantic Ocean

An Atlantic hurricane or tropical storm is a tropical cyclone that forms in the Atlantic Ocean, usually between the months of June and November. A hurricane differs from a cyclone or typhoon only on the basis of location. A hurricane is a storm that occurs in the Atlantic Ocean and northeastern Pacific Ocean, a typhoon occurs in the northwestern Pacific Ocean, and a cyclone occurs in the south Pacific or Indian Ocean.

Tropical cyclone Is a rotating storm system

A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain. Depending on its location and strength, a tropical cyclone is referred to by different names, including hurricane, typhoon, tropical storm, cyclonic storm, tropical depression, and simply cyclone. A hurricane is a tropical cyclone that occurs in the Atlantic Ocean and northeastern Pacific Ocean, and a typhoon occurs in the northwestern Pacific Ocean; in the south Pacific or Indian Ocean, comparable storms are referred to simply as "tropical cyclones" or "severe cyclonic storms".

Effects of tropical cyclones effect of cyclone

The main effects of tropical cyclones include heavy rain, strong wind, large storm surges near landfall, and tornadoes. The destruction from a tropical cyclone, such as a hurricane or tropical storm, depends mainly on its intensity, its size, and its location. Tropical cyclones act to remove forest canopy as well as change the landscape near coastal areas, by moving and reshaping sand dunes and causing extensive erosion along the coast. Even well inland, heavy rainfall can lead to mudslides and landslides in mountainous areas. Their effects can be sensed over time by studying the concentration of the Oxygen-18 isotope within caves within the vicinity of cyclones' paths.

Tropical cyclone forecasting is the science of forecasting where a tropical cyclone's center, and its effects, are expected to be at some point in the future. There are several elements to tropical cyclone forecasting: track forecasting, intensity forecasting, rainfall forecasting, storm surge, tornado, and seasonal forecasting. While skill is increasing in regard to track forecasting, intensity forecasting skill remains nearly unchanged over the past several years. Seasonal forecasting began in the 1980s in the Atlantic basin and has spread into other basins in the years since.

The maximum sustained wind associated with a tropical cyclone is a common indicator of the intensity of the storm. Within a mature tropical cyclone, it is found within the eyewall at a distance defined as the radius of maximum wind, or RMW. Unlike gusts, the value of these winds are determined via their sampling and averaging the sampled results over a period of time. Wind measuring has been standardized globally to reflect the winds at 10 metres (33 ft) above the Earth's surface, and the maximum sustained wind represents the highest average wind over either a one-minute (US) or ten-minute time span, anywhere within the tropical cyclone. Surface winds are highly variable due to friction between the atmosphere and the Earth's surface, as well as near hills and mountains over land.

2009 Atlantic hurricane season hurricane season in the Atlantic Ocean

The 2009 Atlantic hurricane season was a below-average Atlantic hurricane season that produced eleven tropical cyclones, nine named storms, three hurricanes, and two major hurricanes. It officially began on June 1 and ended on November 30, dates that conventionally delimit the period of each year when most tropical cyclones develop in the Atlantic basin. The season's first tropical cyclone, Tropical Depression One, developed on May 28, while the final storm, Hurricane Ida, dissipated on November 10. The most intense hurricane, Bill, was a powerful Cape Verde-type hurricane that affected areas from the Leeward Islands to Newfoundland. The season featured the lowest number of tropical cyclones since the 1997 season, and only one system, Claudette, made landfall in the United States. Forming from the interaction of a tropical wave and an upper level low, Claudette made landfall on the Florida Panhandle with maximum sustained winds of 45 mph (75 km/h) before quickly dissipating over Alabama. The storm killed two people and caused $228,000 in damage.

2013 Atlantic hurricane season hurricane season in the Atlantic Ocean

The 2013 Atlantic hurricane season was a well below average Atlantic hurricane season and the first since 1994 with no major hurricanes. It was also the first season since 1968 with no storms of at least Category 2 intensity on the Saffir–Simpson hurricane wind scale. The first tropical cyclone of this hurricane season, Andrea, developed on June 5, while the final cyclone, an unnamed subtropical storm, dissipated on December 7. Throughout the year, only two storms—Humberto and Ingrid—reached hurricane intensity; this was the lowest seasonal total since 1982.

Glossary of tropical cyclone terms

The following is a glossary of tropical cyclone terms.

References

  1. Frappier, Amy Benoit; Sahagian, Dork; Carpenter, Scott J.; González, Luis A.; Frappier Brian R. (2007). "Stalagmite stable isotope record of recent tropical cyclone events". Geology. 35 (2): 111–114. Bibcode:2007Geo....35..111B. doi:10.1130/G23145A.1.
  2. Nobu Shimizu. If Rocks Could Talk... Retrieved on 2006-12-09.
  3. Anne L. Cohen and Graham D. Layne. Seeking a hurricane signature in coral skeleton. Retrieved on 2006-12-09.
  4. Liu, Kam-biu; Fearn, Miriam L. (2000). "Reconstruction of Prehistoric Landfall Frequencies of Catastrophic Hurricanes in Northwestern Florida from Lake Sediment Records". Quaternary Research. 54 (2): 238–245. Bibcode:2000QuRes..54..238L. doi:10.1006/qres.2000.2166.
  5. Louisiana State University. LSU Professor looks for link between hurricanes and coastal fires: Evidence suggests risk for fire may be higher after catastrophic storms. Archived 2007-09-27 at the Wayback Machine . Retrieved on 2006-12-09.
  6. Kam-biu Liu; Caiming Shen; Kin-sheun Louie (2001). "A 1,000-Year History of Typhoon Landfalls in Guangdong, Southern China, Reconstructed from Chinese Historical Documentary Records". Annals of the Association of American Geographers. 91 (3): 453–464. doi:10.1111/0004-5608.00253.
  7. 1 2 Brian R. Jarvinen, Charles J. Neumann, and Mary A. S. Davis. A Tropical Cyclone Data Tape For the North Atlantic Basin, 1886-1983: Contents, Limitations, and Uses. Retrieved on 2006-12-09.
  8. Landsea, C. W. (2004). "The Atlantic hurricane database re-analysis project: Documentation for the 1851–1910 alterations and additions to the HURDAT database". In Murname, R. J.; Liu, K.-B. Hurricanes and Typhoons: Past, Present and Future. New York: Columbia University Press. pp. 177–221. ISBN   0-231-12388-4.
  9. 1 2 3 4 Central Pacific Hurricane Center. Observations. Retrieved on 2006-12-09.
  10. Florida Coastal Monitoring Program. "Project Overview". University of Florida. Archived from the original on January 17, 2006. Retrieved 2006-03-30.
  11. Hurricane Research Team. "Texas Tech Hurricane Research Team Project History and Information". Texas Tech University. Archived from the original on September 1, 2006. Retrieved 2006-03-30.
  12. Associated Press. STORM PATROL BILL PASSED TO PRESIDENT. [ permanent dead link ] Retrieved on 2008-06-06.
  13. 1 2 B. Geerts. Tropical cyclone track forecasting. Retrieved on 2007-04-10.
  14. "Convair 580 takes on hurricane tracking role". National Research Council. 2005-03-03. Archived from the original on 2005-12-19. Retrieved 2008-09-03.
  15. Aerosonde. Aerosonde first UAV to Recce a Tropical Cyclone. Retrieved on 2006-12-09.
  16. "Organization | National Oceanic and Atmospheric Administration". Noaa.gov. 2016-03-30. Retrieved 2016-04-03.
  17. Atlantic Oceanographic and Meteorological Laboratory. Subject: H1) What is the Dvorak technique and how is it used? Retrieved on 2006-12-08.