Urban Transportation Development Corporation

Last updated

Urban Transportation Development Corporation
Company typeSubsidiary
IndustryRail transport
Founded1970;54 years ago (1970)
Headquarters Toronto, Ontario, Canada
Area served
Worldwide
Products Locomotives
High-speed trains
Intercity and commuter trains
Trams
People movers
Signalling systems
Owner Bombardier Transportation (1992-2021) Alstom (2021-Present)
TTC ALRV L3 articulated streetcar #4239 at Queen Street West and Spadina Avenue on the 501, waiting for a light change. TTC Bombardier ALRV 4239.jpg
TTC ALRV L3 articulated streetcar #4239 at Queen Street West and Spadina Avenue on the 501, waiting for a light change.
Urban Transportation Development Corporation Limited
Company type
Industry Mass transit/railcar manufacturing / military vehicles
Founded1973;51 years ago (1973) as Ontario Transportation Development Corporation
Defunct1991;33 years ago (1991)
Fateassets acquired by Lavalin and later Bombardier Inc.
Successor Bombardier Transportation
Headquarters,
Products Railcar, Mass transit cars, Streetcars, military vehicles

The Urban Transportation Development Corporation Ltd. (UTDC) was a Crown corporation owned by the Government of Ontario, Canada. It was established in the 1970s as a way to enter what was then expected to be a burgeoning market in advanced light rail mass transit systems. [1] It developed significant expertise in linear propulsion, steerable trucks and driverless system controls which were integrated into a transit system known as the Intermediate Capacity Transit System (ICTS). It was designed to provide service at rider levels between a traditional subway on the upper end and buses and streetcars on the lower, filling a niche aimed at suburbs that were otherwise expensive to service.

Contents

Urban Transportation Development Corporation Ltd. was a holding company. During its time it held several wholly owned subsidiary companies:

The Services and R&D companies were merged in the mid-1980s to form Transportation Technology Ltd.

The Intermediate Capacity Transit System (ICTS) was sold into three markets: the Toronto Transit Commission (TTC) for its Scarborough RT line, Detroit's Detroit People Mover, and Vancouver's SkyTrain system.

Further sales proved more difficult than had been hoped, but in the early 1980s, Hawker Siddeley Canada joined forces with UTDC in order to win a number of contracts with the TTC and Ontario's GO Transit commuter network. They formed a joint operating company at their Canadian Car & Foundry (CC&F) factories in Thunder Bay and Kingston, Ontario: Can-Car Rail built heavy-rail passenger cars, subway cars, streetcars and other vehicles. Now armed with a complete portfolio from light to heavy rail, UTDC had a number of additional successes in North America, and became a major vendor in the mass transit market. It was privatized in the 1986, when it was purchased by Lavalin of Quebec. The UTDC factories in Kingston and Thunder Bay continue to produce rapid transit systems for use in Ontario and abroad.

History

Genesis

Toronto grew extensively during the 1960s and 1970s, and like many cities in North America, most of this growth was in the suburbs. In order to move workers to and from the business and industrial areas in the city centre, an extensive series of expressways was planned, and made its way into the city's Official Plan in 1966. As work on the new highways started, a wave of public protest followed as many houses, and in some cases entire neighbourhoods, were bulldozed to make way. The work became increasingly opposed in Toronto, especially after the cause was taken up by famous urban commentator, Jane Jacobs. [2]

In 1971 Bill Davis won the Progressive Conservative Party of Ontario leadership contest, replacing long-serving John Robarts as the official party leader and Premier of Ontario. Shortly after taking power, on 3 June Davis announced that he was cancelling provincial support for the highly controversial Spadina Expressway in Toronto, rising in the legislature and stating that "Cities were built for people and not cars. If we are building a transportation system to serve the automobile, the Spadina Expressway would be a good place to start. But if we are building a transportation system to serve people, the Spadina Expressway is a good place to stop." [2]

Davis felt that the future of urban transit lay not in the automobile, but mass rapid transit systems. In keeping with this, the street portion of the Spadina Expressway was cancelled in 1971, but full funding remained for the Spadina subway line that shared the same right-of-way. [2] However, subways were suitable only for high-density routes that could afford to pay for their expensive construction and operation. In 1980 this was estimated to be between $75 and $80 million a mile. [3] The TTC suggested that all of the high-density routes suitable for subways were already being served.

The other vehicles in use with the TTC, buses and streetcars, would not be able to provide rapid transit unless they were given a separate right-of-way. This expense is easy to justify in the case of a subway with its large passenger capacity, but for a system like a bus the capital costs overwhelm the passenger numbers these systems could carry. What was needed was a new system that reduced the capital costs to be able to efficiently serve low-density routes in the suburbs, a system with flexible sizing somewhere between a small subway and large streetcar, an "intermediate" sized system.

ICTS

ICTS Mark I trains have a conventional subway appearance. This example, on the Scarborough RT, has a driver TTC UTDC ICTS Mark I 3012.jpg
ICTS Mark I trains have a conventional subway appearance. This example, on the Scarborough RT, has a driver
A driverless Mark I operating on the Vancouver SkyTrain SkyTrain Mk 1 at 22nd Street Station.JPG
A driverless Mark I operating on the Vancouver SkyTrain

Work on an Intermediate Capacity Transit System (ICTS) had already started in 1970. [4] Several consulting firms were asked to provide separate feasibility reports with outlines of a basic system. At the time, new urban transit systems were a field of active research across North America due to U.S. federal funding under the Urban Mass Transportation Administration's (UMTA) plans to roll out new systems in cities across the country. UMTA was convinced that urban rail systems would only be able to compete with cars if they had more car-like capabilities, and they were primarily interested in the personal rapid transit (PRT) concept of automated car-like cabs that would pick up and drop off passengers as individual units and then link up into longer trains for travel at high speed between stations. [5] A number of companies in the U.S. were in the process of developing systems for UMTA, and many of these companies submitted a proposal for the ICTS project.

It was with the formation of the new Ministry of Transportation and Communications in May 1972 that serious development of the ICTS started. On 22 November the new policy was announced. [4] The Davis government proposed a new rail network known as GO-Urban that would operate three routes in the Toronto area under the auspices of the recently created GO Transit, and asked for submissions for ICTS vehicles to serve the routes. Fourteen designs were studied, but whittled down to eight formal proposals. Some were PRT systems, while others were more traditional subway-like systems. Three of the eight ran on rubber wheels, four were air cushion vehicles (hovercraft) including a version of the French Aérotrain, while the German firm Krauss-Maffei entered its Transurban system, based on magnetically levitated train (maglev) technology.

The space age maglev system immediately won the interest of the Davis government, and in the Phase II proposals they selected it for further study, along with the Ford ACT and Hawker Siddeley's entry, both of which used rubber tires. Ford withdrew when the ICTS varied too greatly from the system it wanted to develop, which was aimed primarily at sites in the U.S. [6] With only Hawker Siddeley and Krauss-Maffei remaining, the 1 May 1973 announcement that the Krauss-Maffei design had won the contest was unsurprising. [7]

In November 1974 Krauss-Maffei announced that it was forced to withdraw from the project. The West German government had been funding development of several maglev systems based on different technologies, and decided at that time that Krauss-Maffei's system was less interesting than ones from Thyssen-Henschel and Messerschmitt-Bölkow-Blohm. [8] There were also technical problems; in testing, the complex systems needed to switch trains on the magnetic tracks froze up, and would require a re-design. [7] With Krauss-Maffei's financial support gone, and daunting technical problems remaining to be solved, the maglev project died. A test track being constructed on the grounds of the Canadian National Exhibition was abandoned in place, with the foundations and a few support pillars already constructed. Krauss-Maffei continued development of the original inter-city Transrapid, but at a very slow pace and through a series of mergers with other companies involved in maglev technology. The first Transrapid system did not enter service until 30 years later. [9]

UTDC

On 14 April 1975, the Ministry of Transportation arranged financing for Phase I and II studies to develop a new system to replace the maglev. In June 1975 the Ontario Transportation Development Corporation (OTDC) announced that it had arranged a consortium to continue the development of the ICTS, changing its name to "Urban Transportation Development Corporation" to avoid any "provinciality" during its efforts to market what would now be an entirely local design to other cities. [10] The consortium consisted of SPAR Aerospace for the linear induction motor, Standard Elektrik Lorenz's "SelTrac IS" system for the automatic control system, Dofasco for an articulated bogie system, Alcan for the design of the car bodies and a set of prototypes, and Canadair for assembly and production. [11]

A Transit Development Centre for UTDC was built on a 480-acre (190 ha) site in Millhaven, outside of Kingston, Ontario. Kingston had been home to the Canadian Locomotive Company that closed its doors in 1969, and the city lobbied hard for the new company to locate there. It was officially opened on 29 September 1978 by James Snow, the Minister of Transportation and Communications. The site included a 1.9 km (1.2 mi) oval test track that included at-grade, elevated and ramped sections, switches, and the automatic control centre. [12] Phase III of the ICTS program ended on 31 January 1980 when testing on the prototype was completed at the Millhaven site; by this point the government had invested about $57.2 million, of a total $63 million spent on the product by the government and its industrial partners. [13]

Looking for a site in Ontario to serve as a test bed for the ICTS, the government focused on an extension of the eastern end of TTC's Bloor–Danforth line. The TTC had already started building a streetcar line that would extend from the end of the subway at Kennedy station to the Scarborough City Centre, a low-density route passing through industrial land. The TTC was not interested in changing to the ICTS for this route, until the Ontario government, which provided about 80% of the capital costs, stepped in and demanded the ICTS be used. A smaller system in Hamilton, Ontario was also considered, and there was a brief study for a similar system in Ottawa, Ontario. [3] Vancouver, British Columbia was interested in the system as part of the Expo 86 buildout in keeping with the theme, "Transportation and Communication". [3] Although the UMTA program in the U.S. was "de-funded" that year, Detroit pressed ahead with its plans and signed up in August. Hamilton, Ottawa, Miami, Los Angeles and Washington, D.C. were also in talks with UTDC. [14] With three customers lined up, a manufacturing plant was added to the Millhaven site, VentureTrans Manufacturing, which opened in 1982. Having won the contracts in Canada and USA, UTDC attempted to market the ICTS technology in Europe and Asia. One "near-miss" was in London, where UTDC succeeded in persuading the client, the London Docklands Development Corporation, to purchase a driverless elevated system for its Docklands Light Railway. However, due to funding constraints, a cheaper system requiring an on-board attendant was implemented. [15]

In 1982 UTDC also entered a design to offer rail service to the suburbs east of Toronto, a system known as GO ALRT. ALRT was based on the ICTS technology, but used a longer car about the size of a conventional railway passenger car, and replaced the third rail power with an overhead pantograph. Given the larger sized cars that made mechanical placements easier, conventional motors replaced the linear motor in order to reduce capital costs (the linear motor requires an aluminum "fourth rail" for the entire line). However, due to changes in the laws governing the operation of GO trains on the freight railways they ran on, GO was able to improve its schedules without having to build any new infrastructure. ALRT was cancelled in 1985 in favour of conventional heavy rail technology. [16] UTDC later played an important part in this build-out in spite of these changes, and GO eventually built its own twin-track line to Oshawa. Construction of the exclusive guideway had already begun in the early 1980s for GO ALRT, which was then modified shortly after to allow for conventional GO Train service. Work on the exclusive track from Pickering to Whitby was completed in 1988, followed by an extension to Oshawa in 1995 with limited service, which was shortly after pushed back up to all day two-way service, allowing for further expansion of Lakeshore East GO train service.

Construction of the Toronto and Vancouver systems proceeded apace, with the Scarborough RT opening for service on 22 March 1985, [17] followed by the Vancouver SkyTrain on 11 December 1985, where passenger service on what is today's Expo Line started in January 1986. [18] The systems suffered from serious teething problems; snow froze to the third rail which required the Scarborough RT system to be fitted with protective covers. The braking system was too powerful and caused the wheels to rub flat in spots, which led to noisy running, the opposite of the design goal. Bugs in the automatic control software led to a number of problems with doors that would not open, "phantom cars" that would appear mid-line and cause the collision avoidance systems to turn on and freeze trains in place in spite of having a driver. A host of other problems seriously delayed scheduled operations. In Toronto, the Scarborough RT became a subject of ridicule, often closing in heavy snows. [19] Most of the problems with the Toronto and Vancouver systems were worked out by the time the Detroit People Mover opened in July 1987.

In the early 1980s, the UTDC was involved in the planning of a new light railway in the northwest New Territories, Hong Kong. The corporation was engaged under a bid by Kowloon Wharf to build and operate the system. After Kowloon Wharf pulled out of the project in 1983, citing concerns over the slow pace of development in Tuen Mun New Town, UTDC was among several companies that expressed interest in building the railway, but not in operating it. [20] The Light Rail Transit was eventually built by the Kowloon-Canton Railway Corporation and opened in 1988.

Can-Car Rail

A CLRV L2 streetcar operating for the Toronto Transit Commission CLRV 4059 Glamour Shot.jpg
A CLRV L2 streetcar operating for the Toronto Transit Commission
A GO Transit Bi-level coach in Toronto GO Train at Exhibition GO Station with a view of CN Tower.jpg
A GO Transit Bi-level coach in Toronto

Starting in 1972, the TTC contracted Hawker Siddeley Canada to design a new streetcar known as the "Municipal Surface Car". However, the Government of Ontario had formed the OTDC in the early 1970s, and provided the TTC 75% of its capital funding. The government then demanded that the TTC turn to OTDC for new vehicles. [21]

In August 1973 the TTC placed an order with the OTDC for 200 new Canadian Light Rail Vehicles (CLRV). The design was purchased from the Swiss company Schweizerische Industrie Gesellschaft (SIG). SIG was contracted to build the first 10 before turning over construction to OTDC, subcontracted at Hawker Siddeley's CC&F factory in Thunder Bay. The prototype run was cut to six, in order to allow four to be converted into an articulated design, the Articulated Light Rail Vehicle (ALRV). [22] [23] UTDC unveiled the ALRV at a June 18–19, 1982 open house at its Transit Development Centre, which over 10,000 people attended.

In March 1983 Hawker Siddeley Canada sold a portion of its CC&F factory in Thunder Bay to the UTDC, creating the jointly owned Can-Car Rail. Hawker Siddeley had already developed a number of rail vehicles, and with its partnership with UTDC these became the favoured products for a number of contracts in Ontario. In addition to the ICTS, UTDC now had a product portfolio that spanned everything from streetcars to subways to traditional heavy rail passenger cars and hoppers.

Continued successes

In December 1983 the TTC announced that it was buying 126 subway cars from UTDC, and followed this in February 1984 with an order for 52 ALRVs. The subway cars were built at Can-Car, but after the first ten ALRVs, streetcar production moved to the Millhaven plants which were winding down their ICTS production.

A further run of a modified double-ended ALRVs followed for the Santa Clara County Transportation Agency (now the Santa Clara Valley Transportation Authority), and then a run of 58 subway cars for the Massachusetts Bay Transportation Authority in Boston. These were the first of many such orders, and hundreds of subway cars were delivered to various U.S. transport services over the next two decades.

Since the early 1970s, Hawker Siddeley had been designing a new two-level railcar for GO Transit, which they started delivering in 1976 as the BiLevel. GO continued placing additional orders, eventually buying 470 for their service in southern Ontario, where the BiLevel is widely associated with GO.

When downsizing hit GO in the early 1990s, a number of these coaches were leased out to various operators in Canada and the US. They were received to rave reviews, and quickly generated orders from operators across North America. Several hundred additional BiLevel cars were built, and over 700 remain in service.[ when? ]

UTDC's Can-Car also produced a number of other products for sales to the Canadian Forces, the medium-sized M35 2-1/2 ton cargo truck and the larger Steyr Percheron. [24]

Sale to Lavalin

The LRC intercity train developed for Via Rail VIA Rail Canada LRC -6917.jpg
The LRC intercity train developed for Via Rail

As early as 1981 the Government of Ontario had considered selling UTDC to the private sector. The government's concern was that without a manufacturing business, UTDC would find it difficult to make enough income to justify its Kingston operations. If the company did start a manufacturing side, it would be inappropriate for the company to remain government owned. [14] In 1986 the new Ontario government announced its intention to sell UTDC to Lavalin, a large engineering company in Montreal, Quebec. Lavalin purchased the company for CAD$50 million, less than the $70 million spent on the UTDC by the government up to 1981. [14] The sale was very controversial at the time: $39 million of several non-performance payments had to be made because of the early problems on the ICTS that had to be paid out by the government. Soon after, Hawker Siddeley announced that it was selling its remaining interest in CC&F to Lavalin as well.

This was during a period of rapid conglomeration by Lavalin, which included purchases of the Bellechasse Hospital in Montreal, MétéoMédia's television services, and many other businesses that were unrelated to its core engineering strengths. By the early 1990s this aggressive expansion plan led to a massive debt load and serious financial difficulties. In 1991, Lavalin's bankers put it under pressure to be acquired by its chief rival, SNC. Lavalin announced its intent to sell its stake in UTDC, and several companies expressed an interest, including Asea Brown Boveri and Westinghouse. [25] Before this was completed, the company went bankrupt.

Sale to Bombardier Transportation

The Kelana Jaya line in Kuala Lumpur uses Bombardier's second-generation ART technology My kul 20070218101402.jpg
The Kelana Jaya line in Kuala Lumpur uses Bombardier's second-generation ART technology

As part of the proceedings, UTDC was returned to the Government of Ontario, which quickly sold it to Bombardier in February 1992. [26] [27] Bombardier Transportation had in late 1991 negotiated a $17 million subsidy from the Ontario government for the purchase. [28] SNC purchased the engineering portions of the company and became SNC-Lavalin, while most other business were sold to other firms. At that time, UTDC Inc. was a manufacturer of mass transit vehicles with 860 workers in Thunder Bay and Kingston, Ontario, creating a yearly turnover of .US$ 250 million. Bombardier received a US$ 17 million subsidy in return for commitments to maintain employment and investments of up to  US$ 30 million in plant and equipment. [29]

Bombardier quickly re-branded the UTDC products under its growing Bombardier Transportation marque, which started in 1970 with its purchase of Rotax, which made engines used in Bombardier's snowmobiles as well as tramcars. Now in the train business, in 1975 it added the Montreal Locomotive Works and its LRC high-speed train design. Although the LRC was never the success Bombardier hoped, the company continued to buy other rail companies in North America and Europe, dramatically expanding its divisions until, with its purchase of ADtranz in 2001, the largest supplier of rail equipment in the world at the time. [30]

The Bombardier Flexity Freedom light rail vehicle built for the Ion rapid transit network in the Kitchener-Waterloo region First tram for Kitchener-Waterloo April 2017.jpg
The Bombardier Flexity Freedom light rail vehicle built for the Ion rapid transit network in the Kitchener-Waterloo region

Bombardier was much more aggressive in marketing the UTDC product line than either the government or Lavalin had been, especially the ICTS. Bombardier re-designed the cars, expanding the passenger capacity and updating their look, re-introducing the product as the Bombardier Advanced Rapid Transit (ART). ART won the contest for the AirTrain JFK project, and an improved design introducing articulating sections between adjacent cars (replacing the coupling and doors of the older (retroactively named) Mark I design) have won several new contests, including the Millennium Line extension of the Vancouver SkyTrain network. ART technology has also been exported outside North America, and is in use on the Kelana Jaya Line in Kuala Lumpur, the Airport Express in Beijing (in four-car trains), and on the EverLine outside of Seoul. The design has since evolved into the third-generation Bombardier Innovia Metro design and marketed as part of Bombardier's Innovia family of automated transportation products. [31]

Vancouver continues to be the largest operator of the ICTS system, with nearly 50 kilometres (31 mi) of operational Innovia Metro trackage on two of its SkyTrain lines since the Evergreen Extension began service in 2016. Its entire fleet of Mk I and Mk II trains remain in service and have been supplemented by newly built Mk III trains. [32]

Bombardier also continues to win sales with its other light rail vehicles, including a major expansion of its globally based Bombardier Flexity platform to the North American streetcar and light rail markets. In 2009, the TTC selected a derivative of the Bombardier Flexity Outlook design to replace its legacy fleet and make its entire streetcar network wheelchair-accessible, [33] and in 2010 Metrolinx commissioned a large order of Bombardier Flexity Freedom LRVs for newly constructed light rail lines in the Greater Toronto Area. [34] Although manufacturing of both the TTC and Metrolinx orders was intended to be completed entirely at the CC&F plants, [35] recurrent delays and other technical problems [36] have led to Bombardier opening a second production line at the former CLC site in Kingston. [37]

UTDC products

Interior of UTDC H6 subway car Toronto ttc car subway.jpg
Interior of UTDC H6 subway car
Massachusetts Bay Transportation Authority 1700-series subway cars 1700 series stock on MBTA Red Line.jpg
Massachusetts Bay Transportation Authority 1700-series subway cars
Santa Clara County (San Jose) UTDC LRV UTDC-built San Jose LRV 809 on First St north of San Carlos St in 1993.jpg
Santa Clara County (San Jose) UTDC LRV

Mass transit

Light rail

Heavy rail

Military and other

Similar Steyr chassis is the basis of UTDC 24M32 Steyr Langmaterialwagen 6x6 - Schweizer Armee - Steel Parade 2006.jpg
Similar Steyr chassis is the basis of UTDC 24M32
MLVW 7 Toronto Regiment Truck (1).JPG
MLVW

UTDC Can Car Rail division built several military vehicles for the Canadian Forces:

Transportation Technology Ltd. installed:

Multi-Purpose Small Bus, a handicap transit vehicle developed by UTDC with Rek-Vee Industries in Scarborough and FunCraft Vehicles in Cambridge

Major clients

Related Research Articles

<span class="mw-page-title-main">Toronto Transit Commission</span> Agency responsible for local public transit in Ontario, Canada

The Toronto Transit Commission (TTC) is the public transport agency that operates bus, subway, streetcar, and paratransit services in Toronto, Ontario, Canada, some of which run into the Peel Region and York Region. It is the oldest and largest of the urban transit service providers in the Greater Toronto Area, with numerous connections to systems serving its surrounding municipalities.

<span class="mw-page-title-main">Line 3 Scarborough</span> Defunct light rapid transit line in Toronto, Canada

Line 3 Scarborough, originally known as Scarborough RT (SRT), was a light rapid transit line that was part of the Toronto subway system in Toronto, Ontario, Canada. The line ran entirely within the eastern district of Scarborough, encompassing six stations and 6.4 kilometres (4.0 mi) of mostly elevated track. It connected with Line 2 Bloor–Danforth at its southwestern terminus, Kennedy, and terminated in the northeast at McCowan. Until its closure in July 2023, the system had a ridership of 3,908,000.

<span class="mw-page-title-main">Innovia Metro</span> Automated rapid transit system

Innovia Metro is an automated rapid transit system manufactured by Alstom. Innovia Metro systems run on conventional metal rails and pull power from a third rail but are powered by a linear induction motor that provides traction by using magnetic force to pull on a "fourth rail" placed between the running rails. However, newer versions of the technology are available with standard electric rotary propulsion.

<span class="mw-page-title-main">Toronto subway</span> Rapid transit system in Ontario, Canada

The Toronto subway is a rapid transit system serving Toronto and the neighbouring city of Vaughan in Ontario, Canada, operated by the Toronto Transit Commission (TTC). As of September 2023, the subway system is a rail network consisting of three heavy-capacity rail lines operating predominantly underground. As of December 2022, three new lines are under construction: two light rail lines and one light metro line.

<span class="mw-page-title-main">Halton County Radial Railway</span> Railway museum / Heritage railway in Milton, Ontario

The Halton County Radial Railway is a working museum of electric streetcars, other railway vehicles, buses and trolleybuses. It is operated by the Ontario Electric Railway Historical Association (OERHA). It is focused primarily on the history of the Toronto Transit Commission (TTC) and its predecessor, the Toronto Transportation Commission, Its collection includes PCC, Peter Witt, CLRV and ALRV, and earlier cars from the Toronto streetcar system as well as G-series and M-series Toronto subway cars.

<span class="mw-page-title-main">Toronto streetcar system</span> Streetcar network in Ontario, Canada

The Toronto streetcar system is a network of eleven streetcar routes in Toronto, Ontario, Canada, operated by the Toronto Transit Commission (TTC). It is the third busiest light-rail system in North America. The network is concentrated primarily in Downtown Toronto and in proximity to the city's waterfront. Much of the streetcar route network dates from the 19th century. Three streetcar routes operate in their own right-of-way, one in a partial right-of-way, and six operate on street trackage shared with vehicular traffic with streetcars stopping on demand at frequent stops like buses. Since 2019, the network has used low-floor streetcars, making it fully accessible.

<span class="mw-page-title-main">Canadian Car and Foundry</span> Transportation vehicle manufacturer in Canada, 1909-1980s

Canadian Car and Foundry (CC&F), also variously known as "Canadian Car & Foundry" or more familiarly as "Can Car", was a manufacturer of buses, railway rolling stock, forestry equipment, and later aircraft for the Canadian market. CC&F history goes back to 1897, but the main company was established in 1909 from an amalgamation of several companies and later became part of Hawker Siddeley Canada through the purchase by A.V. Roe Canada in 1957. Today the remaining factories are part of Alstom after its acquisition of Bombardier Transportation completed in 2021.

<span class="mw-page-title-main">Hawker Siddeley Canada</span> Manufacturing company

Hawker Siddeley Canada was the Canadian unit of the Hawker Siddeley Group of the United Kingdom and manufactured railcars, subway cars, streetcars, aircraft engines and ships from the 1960s to 1980s.

Bombardier Transportation was a Canadian-German rolling stock and rail transport manufacturer, with headquarters in Berlin, Germany. It was one of the world's largest companies in the rail vehicle and equipment manufacturing and servicing industry. Bombardier Transportation had many regional offices, production and development facilities worldwide. It produced a wide range of products including passenger rail vehicles, locomotives, bogies, propulsion and controls. In February 2020, the company had 36,000 employees, and 63 manufacturing and engineering locations around the world. Formerly a division of Bombardier Inc., the company was acquired by French manufacturer Alstom on 29 January 2021.

<span class="mw-page-title-main">H series (Toronto subway)</span> Toronto subway rapid transit rolling stock

The H series was the third series of rapid transit rolling stock used in the subway system of Toronto, Ontario, Canada. They were built in six production sets, named H-1 to H-6, from 1965 to 1990 in Thunder Bay, Ontario, for the Toronto Transit Commission (TTC).

<span class="mw-page-title-main">S series (Toronto subway)</span> Former Toronto subway light metro rolling stock

The S series was the rolling stock of light metro used on Line 3 Scarborough, part of the subway system of Toronto, Ontario, Canada. They were built from 1983 to 1986 for the Toronto Transit Commission (TTC) by the Urban Transportation Development Corporation (UTDC) in Millhaven, Ontario. The trains use UTDC's proprietary linear motor-based Intermediate Capacity Transit System and are its Mark I model, which is also used by the Vancouver SkyTrain and the Detroit People Mover. They consist of 14 married pair sets with fleet numbers 3000 to 3027, and are not compatible with the trains on other Toronto lines, which use conventional motors.

<span class="mw-page-title-main">Canadian Light Rail Vehicle</span> Type of Canadian streetcar

The Canadian Light Rail Vehicle (CLRV) and Articulated Light Rail Vehicle (ALRV) were types of streetcars used by the Toronto Transit Commission (TTC) from the late 1970s until the late 2010s. They were built following the TTC's decision to retain streetcar services in the 1970s, replacing the existing PCC streetcar fleet.

GO ALRT was a rapid transit system proposed by GO Transit in 1982. The ALRT system would have been implemented along two new lines in the Greater Toronto Area. It would have used a new electric train to provide interurban service, also then referred to as "inter-regional rapid transit", along the existing and new GO corridors. The system was based on an enlarged UTDC ICTS vehicle that was designed to offer a compromise between passenger capacity and the level of infrastructure needed to support it. The project was cancelled due to budget cuts by the Tory government in 1985. However, a number of the proposed lines were later implemented using conventional heavy rail systems, including the eastern portion of the Lakeshore East GO train service route from Pickering station to Whitby station in the Durham region.

<span class="mw-page-title-main">Flexity Outlook (Toronto)</span> Toronto streetcar model operated by the TTC

The Flexity Outlook is the latest model of streetcar in the rolling stock of the Toronto streetcar system owned by the Toronto Transit Commission (TTC). Based on the Bombardier Flexity, they were first ordered in 2009 and were built by Bombardier Transportation in Thunder Bay and Kingston, Ontario, with specific modifications for Toronto, such as unidirectional operation and the ability to operate on the unique broad Toronto gauge.

Krauss-Maffei's Transurban was a 12-passenger automated guideway transit (AGT) mass transit system based on a maglev guideway. Development started in 1970 as one of the many AGT and PRT projects that followed in the wake of the HUD reports of 1968. Its selection as the basis of the GO-Urban system in Toronto in 1973 made it well known in the industry; it would have been the basis of the first large-area AGT mass transit network in the world. Technical problems cropped up during the construction of the test track, and the sudden removal of funding by the West German government led to the project's cancellation in late 1974. The Ontario government completed development and installation of a non-maglev version, today known as the Bombardier Advanced Rapid Transit.

GO-Urban was a planned mass transit project for Greater Toronto to be operated by GO Transit. The system envisioned the use of automated guideway transit vehicles set up in hydro corridors and other unused parcels of land to provide rapid transit services without the expense of constructing tunnels. GO-Urban would serve high-density areas in the downtown core, but also be able to accelerate to high speed between distant stations in the outskirts of the city. Similar deployments were planned for Hamilton and Ottawa.

<span class="mw-page-title-main">Toronto streetcar system rolling stock</span>

In 1921, the Toronto Transportation Commission (TTC) was created to integrate and operate the Toronto streetcar system. It inherited the infrastructure of two separate streetcar operators: the Toronto Railway Company (TRC) and Toronto Civic Railways (TCR). The TTC immediately embarked on a program to connect the TRC and TCR lines into one network. The TTC had to rebuild most of the track to provide a wider devilstrip so that the wider Peter Witt streetcars it was ordering could pass without sideswiping. Between 1938 and 1945, it placed five orders for air-electric PCC streetcars to replace the old, wooden streetcars of the TRC, and to address rising ridership. Between 1947 and 1951, the TTC placed three orders for all-electric PCC cars, with one order equipped with couplers for multiple-unit operation. Between 1950 and 1957, the TTC purchased PCCs from four American cities. By 1957, the TTC had more PCCs than any other city in North America. After the opening of the Bloor–Danforth subway in 1966, the TTC considered terminating all streetcar service in Toronto. However, in 1972, a citizens group led by Jane Jacobs and Steve Munro called "Streetcars for Toronto" persuaded the City to retain streetcar operation. This led to the development of the Canadian Light Rail Vehicle (CLRV) and its longer, articulated cousin, the Articulated Light Rail Vehicle (ALRV), to replace the aging PCC fleet. The Accessibility for Ontarians with Disabilities Act, 2005 (AODA) mandated that the next generation of streetcars be wheelchair-accessible. Thus, to replace the CLRVs and ALRVs, Bombardier adapted its low-floor Flexity Outlook model for the TTC to navigate the Toronto streetcar system's tight curves and single-point switches, characteristics set in 1921 to accommodate Peter Witt streetcars, as well as for the broad gauge.

<span class="mw-page-title-main">Flexity</span> Public transport vehicles made by Bombardier Transportation and Alstom

The Alstom Flexity is a family of trams, streetcars and light rail vehicles manufactured by Bombardier Transportation, since 2021 a division of French company Alstom. As of 2015, more than 3,500 Flexity vehicles are in operation around the world in Europe, Asia, Oceania, and North America in 100 cities among 20 countries internationally. Production of the vehicles is done at Bombardier's global production plants and by local manufacturers worldwide through technology transfer agreements.

<span class="mw-page-title-main">Hillcrest Complex</span> Maintenance facility of the Toronto Transit Commission

Hillcrest Complex, the Toronto Transit Commission's largest facility, is responsible for most of the maintenance work on the system's surface vehicles, including heavy overhauls, repairs, and repainting. It is located adjacent to the intersection of Bathurst Street and Davenport Road. The site is also home to the TTC's Transit Control Centre, but the operational headquarters of the organization remains at the McBrien Building, at 1900 Yonge Street.

<span class="mw-page-title-main">Toronto-gauge railways</span> Railway track gauge (1495 mm)

Toronto-gauge railways are tram and rapid transit lines built to Toronto gauge, a broad gauge of 4 ft 10+78 in. This is 2+38 in (60 mm) wider than standard gauge of 4 ft 8+12 in which is by far the most common track gauge in Canada. The gauge is unique to the Greater Toronto Area and is currently used on the Toronto streetcar system and the Toronto subway, both operated by the Toronto Transit Commission. As well, the Halton County Radial Railway, a transport museum, uses the Toronto gauge so its rail line can accommodate its collection of Toronto streetcars and subway trains. Several now-defunct interurban rail systems also once used this gauge.

References

Notes

  1. Chris Bateman (19 August 2014). "The story of the last new streetcar launch in Toronto". BlogTO. Archived from the original on 21 August 2014. Retrieved 20 August 2014. The decision to keep the city's streetcars wasn't a simple one. The TTC's Presidents' Conference Committee streetcars were in urgent need of replacement, but no successor was in development. As a result, the province established the Ontario Transportation Development Corporation (later re-named Urban Transportation Development Corporation, UTDC for short) to design a new light rail vehicle it could sell to Toronto and, it hoped, other cities.
  2. 1 2 3 Sewell
  3. 1 2 3 Litvak & Maule, pg. 104 - the first mention puts it at $80 million, but the very next page puts it at $75
  4. 1 2 Litvak & Maule, pg. 72
  5. Ken Avidor, "A Brief History of Personal Rapid Transit in Minnesota", Minnesota2020
  6. Litvak & Maule, pg. 75
  7. 1 2 Filey, pg. 39
  8. "1934 - 1977 From the idea to the system decision" Archived 2011-06-09 at the Wayback Machine , Transrapid International
  9. Harald Maas, "Schanghai stutzt den Transrapid", Tagesspiegel, 1 February 2008
  10. Litvak & Maule, pg. 93
  11. Litvak & Maule, pg. 99
  12. James Bow, "UTDC Kingston Transit Development Centre", Transit Toronto
  13. Litvak & Maule, pg. 103
  14. 1 2 3 Litvak & Maule, pg. 105
  15. Michael Schabas,The Railway Metropolis: How Planners Politicians and Developers Shaped Modern London, p40 ICE Press 2016
  16. Peter Drost, "The GO-ALRT Program", Transit Toronto, 10 November 2006
  17. "TTC Rapid Transit and Streetcar Official Opening Dates", TTC
  18. Heather Conn, "On track: the SkyTrain story", B.C. Transit, 1996
  19. "Scarborough RT back in service", Toronto Star, 18 January 2009
  20. Chugani, Michael (22 January 1983). "Tuen Mun light rail system will still be built" (PDF). South China Morning Post. Retrieved 6 November 2014.
  21. Purchase of TTC Vehicles Hansard 24 May 1983
  22. Ray Corley, "CLRV: Canadian Light Rail Vehicle", The Toronto Transit Commission, October 1996
  23. Bow, James (17 May 2020). "THE ARTICULATED LIGHT RAIL VEHICLES (THE ALRVS)". Transit Toronto. Retrieved 13 November 2023.
  24. "HLVW: Heavy utility truck". Military-Today.com. Andrius Genys (ARG). Retrieved 22 May 2014.
  25. UTDC for sale Northern Ontario Business June 1991
  26. Bombardier comples UTDC acquisition Railway Age March 1992 page 24
  27. "Hon Ms Wark-Martyn", Hansard (HIGHWAY TRAFFIC AMENDMENT ACT (FIREFIGHTERS)), 7 December 1994, pg. 2330
  28. Farnsworth, Clyde H. "Bombardier Returns to Earth", The New York Times, December 28, 1991. Retrieved August 31, 2018.
  29. Farnsworth, Clyde H. (28 December 1991). "Bombardier Returns to Earth". New York Times. Retrieved 10 October 2023.
  30. Rail industry spooked by international suppliers The Age 19 February 2007
  31. "INNOVIA Metro". Bombardier Transportation. Retrieved 3 March 2018.
  32. Bennett, Nelson (3 December 2012). "Bombardier wins contract to build Evergreen Line trains". Business in Vancouver. Retrieved 3 March 2018.
  33. Kalinowski, Tess (24 April 2009). "TTC picks Bombardier to supply streetcars". The Toronto Star. ISSN   0319-0781 . Retrieved 2 March 2018.
  34. "Metrolinx exercises option for 182 light rail vehicles". Metro Report International . 14 June 2010. Retrieved 3 March 2018.
  35. Toronto picks Flexity Outlook Railway Gazette International 27 April 2009
  36. "Bombardier reputation takes hit after Metrolinx threatens to cancel deal". Desautels Faculty of Management. 7 November 2016. Retrieved 3 March 2018.
  37. Spurr, Ben (6 February 2018). "Bombardier sets up new streetcar production line in Kingston, gives TTC new delivery schedule". The Toronto Star. ISSN   0319-0781 . Retrieved 2 March 2018.

Bibliography

Further reading

  • William Middleton, "Metropolitan railways: Rapid Transit in America", Indiana University Press, 2002, ISBN   0-253-34179-5