Alkane 1-monooxygenase

Last updated
alkane 1-monooxygenase
Identifiers
EC no. 1.14.15.3
CAS no. 9059-16-9
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, an alkane 1-monooxygenase (EC 1.14.15.3) is an enzyme that catalyzes the chemical reactions

an alkane + reduced rubredoxin + O2 a primary alcohol + oxidized rubredoxin + H2O.

Alkanes of 6 to 22 carbons have been observed as substrates. [1] This enzyme belongs to the family of oxidoreductases, specifically those acting on paired donors, with oxygen as oxidant and incorporation or reduction of oxygen. The oxygen incorporated need not be derived from O2 with reduced iron-sulfur protein as one donor, and incorporation of one atom of oxygen into the other donor. The systematic name of this enzyme class is alkane, reduced-rubredoxin:oxygen 1-oxidoreductase. Other names in common use include alkane 1-hydroxylase, omega-hydroxylase, fatty acid omega-hydroxylase, alkane monooxygenase, 1-hydroxylase, AlkB, and alkane hydroxylase. It contains a diiron non-heme active site.

Recently two crystal structures of the enzyme have appeared that provide much more information about the structure of the enzyme. [2] [3] Both structures show an unusual diiron active site where the two iron ions are separated by more than 5 angstroms. Neither structure shows evidence for a ligand that would bridge the two iron ions.

Related Research Articles

<span class="mw-page-title-main">Rubredoxin</span>

Rubredoxins are a class of low-molecular-weight iron-containing proteins found in sulfur-metabolizing bacteria and archaea. Sometimes rubredoxins are classified as iron-sulfur proteins; however, in contrast to iron-sulfur proteins, rubredoxins do not contain inorganic sulfide. Like cytochromes, ferredoxins and Rieske proteins, rubredoxins are thought to participate in electron transfer in biological systems. Recent work in bacteria and algae have led to the hypothesis that some rubredoxins may instead have a role in delivering iron to metalloproteins.

<span class="mw-page-title-main">Methane monooxygenase</span> Class of enzymes

Methane monooxygenase (MMO) is an enzyme capable of oxidizing the C-H bond in methane as well as other alkanes. Methane monooxygenase belongs to the class of oxidoreductase enzymes.

In enzymology, an anthranilate 1,2-dioxygenase (deaminating, decarboxylating) (EC 1.14.12.1) is an enzyme that catalyzes the chemical reaction

In enzymology, an anthranilate 3-monooxygenase (deaminating) (EC 1.14.13.35) is an enzyme that catalyzes the chemical reaction

In enzymology, a benzoate 1,2-dioxygenase (EC 1.14.12.10) is an enzyme that catalyzes the chemical reaction

In enzymology, a benzoate 4-monooxygenase (EC 1.14.14.92, Formerly EC 1.14.13.12) is an enzyme that catalyzes the chemical reaction

In enzymology, a camphor 1,2-monooxygenase (EC 1.14.15.2) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Camphor 5-monooxygenase</span>

In enzymology, a camphor 5-monooxygenase (EC 1.14.15.1) is an enzyme that catalyzes the chemical reaction

In enzymology, a cholestanetriol 26-monooxygenase (EC 1.14.13.15) is an enzyme that catalyzes the chemical reaction

In enzymology, a CMP-N-acetylneuraminate monooxygenase (EC 1.14.18.2) is an enzyme that catalyzes the chemical reaction

Ecdysone 20-monooxygenase (EC 1.14.99.22) is an enzyme that catalyzes the chemical reaction

Alkylglycerol monooxygenase (AGMO) is an enzyme that catalyzes the hydroxylation of alkylglycerols, a specific subclass of ether lipids. This enzyme was first described in 1964 as a pteridine-dependent ether lipid cleaving enzyme. In 2010 finally, the gene coding for alkylglycerol monooxygenase was discovered as transmembrane protein 195 (TMEM195) on chromosome 7. In analogy to the enzymes phenylalanine hydroxylase, tyrosine hydroxylase, tryptophan hydroxylase and nitric oxide synthase, alkylglycerol monooxygenase critically depends on the cofactor tetrahydrobiopterin and iron.

In enzymology, a hydroxyphenylacetonitrile 2-monooxygenase (EC 1.14.13.42) is an enzyme that catalyzes the chemical reaction

In enzymology, a lithocholate 6beta-hydroxylase (EC 1.14.13.94) is an enzyme that catalyzes the chemical reaction

In enzymology, a pyrimidine-deoxynucleoside 2'-dioxygenase (EC 1.14.11.3) is an enzyme that catalyzes the chemical reaction

In enzymology, a steroid 11beta-monooxygenase (EC 1.14.15.4) is an enzyme that catalyzes the chemical reaction

In enzymology, a trans-cinnamate 4-monooxygenase (EC 1.14.14.91) is an enzyme that catalyzes the chemical reaction

In enzymology, an unspecific monooxygenase (EC 1.14.14.1) is an enzyme that catalyzes the chemical reaction

In enzymology, a rubredoxin-NAD+ reductase (EC 1.18.1.1) is an enzyme that catalyzes the chemical reaction.

A transition metal oxo complex is a coordination complex containing an oxo ligand. Formally O2-, an oxo ligand can be bound to one or more metal centers, i.e. it can exist as a terminal or (most commonly) as bridging ligands (Fig. 1). Oxo ligands stabilize high oxidation states of a metal. They are also found in several metalloproteins, for example in molybdenum cofactors and in many iron-containing enzymes. One of the earliest synthetic compounds to incorporate an oxo ligand is potassium ferrate (K2FeO4), which was likely prepared by Georg E. Stahl in 1702.

References

  1. McKenna EJ, Coon MJ (1970). "Enzymatic omega-oxidation. IV. Purification and properties of the omega-hydroxylase of Pseudomonas oleovorans". J. Biol. Chem. 245 (15): 3882–9. PMID   4395379.
  2. Guo, Xue; Zhang, Jianxiu; Han, Lei; Lee, Juliet; Williams, Shoshana C.; Forsberg, Allison; Xu, Yan; Austin, Rachel Narehood; Feng, Liang (2023-04-17). "Structure and mechanism of the alkane-oxidizing enzyme AlkB". Nature Communications. 14 (1): 2180. doi:10.1038/s41467-023-37869-z. ISSN   2041-1723. PMC   10110569 . PMID   37069165.
  3. Chai, Jin; Guo, Gongrui; McSweeney, Sean M.; Shanklin, John; Liu, Qun (April 2023). "Structural basis for enzymatic terminal C–H bond functionalization of alkanes". Nature Structural & Molecular Biology. 30 (4): 521–526. doi:10.1038/s41594-023-00958-0. ISSN   1545-9985. PMC   10113152 . PMID   36997762.