Aqua Virgo

Last updated
Route of the Aqua Virgo Aqua virgo planlatium 2.jpg
Route of the Aqua Virgo

The Aqua Virgo was one of the eleven Roman aqueducts that supplied the city of ancient Rome. It was completed in 19 BC by Marcus Agrippa, during the reign of the emperor Augustus [1] [2] [3] and was built mainly to supply the contemporaneous Baths of Agrippa in the Campus Martius.

Contents

At its peak, the aqueduct was capable of supplying more than 100,000 cubic metres (100,000,000 L) of water per day.

The name is thought to be derived from the purity and clarity of the water because it does not chalk significantly. According to a legend repeated by Frontinus, thirsty Roman soldiers asked a young girl for water, who directed them to the springs that later supplied the aqueduct; Aqua Virgo was named after her.

Route

Topological plan of Rome Topo planrome2.png
Topological plan of Rome
The only remains above ground, in via del Nazzareno Colonna - arcate Acqua Vergine a via del Nazzareno 1610.JPG
The only remains above ground, in via del Nazzareno
60 metres (200 ft) stretch of the aqueduct arches, recently found inside the Rinascente shopping complex Resti dell'acquedotto dell'Acqua Vergine alla Rinascente.jpg
60 metres (200 ft) stretch of the aqueduct arches, recently found inside the Rinascente shopping complex

Its source is just before the 8th milestone north of the Via Collatina. It collected water from springs near the course of the Aniene, a large system (still functioning and inspectable) of aquifers and springs which were conveyed into a basin (existing until the 19th century) by a series of underground tunnels, and fed the canal by regulating the inflow with a dam. It was also supplemented by several feeder channels along its course.

The aqueduct ran underground for nearly all of its 20.5 kilometres (12.7 mi) length except the last stretch of 1,800 metres (5,900 ft) running partly on arches in the Campus Martius area, of which two sections remain. The aqueduct dropped only 4 metres (13 ft) along its length to its terminus in the centre of the Campus Martius.

The route made a very wide arc, starting from the east and entering the city from the north. It ran along via Collatina up to the Portonaccio area, passed via Nomentana to via Salaria, and then turned south and entered the city under the Horti Lucullani and crossed 1.2 kilometres (0.75 mi) to the area of the Pincian Hill and current Villa Medici, where a spiral staircase (called the Pincio snail) leads to the underground conduit.

The long detour was justified because the aqueduct had to serve the northern suburb of the city, until then without water supply, and because the low level source (only 24 metres (79 ft) above sea level) made it necessary to avoid the steep slopes that the shortest route would have encountered. Probably, the entry into the city from that side also allowed the Campus Martius to be reached without crossing densely populated city areas.

After the limaria pool (settling basin) near the Pincian, the urban stretch began partially on arches, many discovered in 1871. It then passed through the area of the Trevi Fountain and then crossed the current Via del Corso on an arch which was subsequently transformed into a triumphal arch to celebrate the military successes of Claudius in Britain. Later interpretation has found that the aqueduct’s arches continued along the Via del Seminario to a point east of the Pantheon. [5] It terminated in the Campus Martius in front of the Saepta Julia.

A secondary branch reached the inadequately served regions VII, IX, and XIV in the Trastevere area. The route passed from the low area of the Campus Martius over the higher ground of the ridge surrounding the Pantheon basin, and then over the bridge of Agrippa. Tiber River. [5]

Distribution was fairly widespread: according to Frontinus, 200 quinaries were reserved for the suburbs, 1457 for public works, 509 for the imperial house, and the remaining 338 for private concessions, all distributed through a network of 18 castella (distribution cisterns) along the route.

History

There were numerous repairs over time: Tiberius in 37 AD, Claudius between 45 AD and 46 AD, then Constantine the Great [6] and Theodoric.

Emperor Claudius renovated it in 46 AD, as witnessed by an inscription on the architrave in via del Nazzareno, which states that he rebuilt large sections of the aqueduct at this point because Caligula had removed stone for use in constructing an amphitheatre.

In 537 AD, the Goths besieging Rome tried to use this underground channel as a secret route to invade Rome according to Procopius. [7]

After deteriorating and falling into disuse with the fall of the Western Roman Empire, the Aqua Virgo was repaired by Pope Adrian I in the 8th century. In 1453, Pope Nicholas V made a complete restoration and extensive remodelling from its source to its terminus points between the Pincio and the Quirinale and within Campo Marzio and consecrated it Acqua Vergine. This also led the water to the Trevi Fountain and the fountains of Piazza del Popolo, which it still serves today. [7] In the 1930s, a pressurised version was built, the Acqua Vergine Nuovo, separate from the other channels.

Construction

Most of the ancient aqueducts were gravity systems, that is by ensuring the source was higher than the termination and plotting a uniform course for the aqueduct to follow a downward gradient, gravity would provide all the power needed for the water to flow. The aqueducts were for most of their length channels about 50 centimetres (20 in) to 1 metre (3.3 ft) below ground. Tunnels, pipes, and only the final stretches of the aqueducts used arches. The channels were made of three kinds of material: masonry (the most common form), lead pipes, and terracotta. These channels were made using a “cut and cover” technique where the channel path was cut into the ground and then covered in order to easily access the channels that were in need of repair. The floors and walls of the channels were lined with cement, and the roof was usually a vault. The cement was usually as high as the water would reach, which was meant to be about a half to two thirds full. Lining the walls and floor with cement served three purposes: to protect against leaks and seepage, to provide a smooth contact surface, and to make the contact surface continuous and joint free from one end to the other. [8]

In order to maintain the slight downward gradient, the aqueducts didn’t follow a direct route to Rome, but instead used the lay of the land. Typically, the gradient was shallow to make the water flow slower, so fewer repairs would be needed due to quicker water flows causing damage and too shallow of a gradient meant that the water would not flow at all. Different degrees of gradient were used for different reasons. While traveling through a tunnel, for example, a steeper gradient could be used to speed up water flow. Since inside the tunnel repairs were less likely to be needed the water could flow at a higher rate requiring a steeper gradient and then once through the tunnel the gradient would need to increase in order for the water to be slowed back down to its average speed. In later times, the use of high arches across valleys and plains were employed for the aqueducts, and some were even as high as 27 metres (89 ft) off the ground. [8]

Levelling tools

Besides standard water levels similar to those used by contractors today, other kinds of levels were in use during ancient Roman times.

Chorobates, the ancient Roman device for measuring slopes Chorobates2.svg
Chorobates, the ancient Roman device for measuring slopes

Vitruvius explains that while the chorobates may seem to be superior to the dioptra in a project such as the aqueducts, the chorobates are not immune to wind disturbing the plummets on the device (weighted strings). The dioptra and water levels were immune to this. [9]

Lifting Tools

Modern day windlass used for an Anchor AnchorWindlass.jpg
Modern day windlass used for an Anchor

Many lifting tools would have been in use during the Roman times in the construction of temples, tall buildings, bridges, and arches to move large stone blocks and materials from, for example, a quarry, to the job site and then lifted into place.

It is to be made of bronze. The lower part consists of two similar cylinders at a small distance apart, with outlet pipes. These pipes converge like the prongs of a fork, and meet in a vessel placed in the middle. In this vessel, valves are to be accurately fitted above the top openings of the pipes. And the valves by closing the mouths of the pipes retain what has been forced by air into the vessel. Above the vessel, a cover like an inverted funnel is fitted and attached, by a pin well wedged, so that the force of the incoming water may not cause the cover to rise. On the cover of the pip, which is called a trumpet, is jointed to it, and made vertical. The cylinders have, below the lower mouths of the pipes, valves inserted above the openings in their bases. Pistons are now inserted from above rounded on the lathe, and well oiled. Being thus enclosed in the cylinders, they are worked with piston rods and levers. The air and water in the cylinders, since the valves close the lower openings, the pistons drive onwards. By such inflation and the consequent pressure, they force the water through the orifices of the pipes into the vessel. The funnel receives water and forces it out by pneumatic pressure through a pipe. A reservoir is provided, and in this way water is supplied from below for fountains. [9]

Costs

The aqueducts at first were financed mainly through wealth collected from war and the patronage of wealthy individuals. Taxes from conquered peoples also served to help finance the building by taxation, because the aqueducts were never meant to pay for themselves, but serve as a benefit to the people of Rome. In Republic times, the private use of aqueduct water was not common; only the overflow water was sold to individuals. In Imperial times, the construction of more aqueducts meant that more water was available to be sold for private use. [8]

Locating the source

The source of the water was an empirical science in that when the source was obvious such as a spring, lake, or stream, the engineer had to determine the quality of the water. The engineer had to test the taste, clarity, and flow of the water as well as the physique and complexion of the local people who drank it. Soils and rock types were also used as indicators. Clay was regarded as a poor source, while red tufa was considered pure. [8]

Written sources on ancient Roman aqueducts

Sextus Julius Frontinus wrote a study, De aquaeductu , on the state of the aqueducts of Rome. He points out that the welfare of the urban community of Rome depends on the quality of the water supply. [10]

Vitruvius, a Roman architect who worked for Caesar and Augustus, wrote the De architectura (On Architecture). [11] One concept contained in the De architectura is that the quality of an architectural work depends on the social relevance of an artist’s work, not the form or workmanship of the work itself. Another assertion from Vitruvius is that a structure must exhibit the three qualities of firmitas, utilitas, and vinustas (in English, it must be strong and durable, useful, and beautiful and graceful). [10]

Acqua Vergine

The Trevi Fountain Fontana di Trevi - panoramio - Vlad Lesnov.jpg
The Trevi Fountain

The Acqua Vergine is the Renaissance restoration of the Aqua Virgo aqueduct. In 1453, Pope Nicholas V renovated the main channels of the Aqua Virgo and added numerous secondary conduits under Campo Marzio. The original terminus, called a mostra, which means "showpiece", was the stately, dignified wall fountain designed by Leon Battista Alberti in Piazza dei Crociferi. Due to several additions and modifications to the end-most points of the conduits during the years that followed, during the Renaissance and Baroque periods, the Acqua Vergine culminated in several magnificent mostre: the Trevi Fountain and the fountains of Piazza del Popolo. [12]

Courses

Two separate aqueducts emerge from the source for the Acqua Vergine unlike the Aqua Virgo:

Termini

Today, as in days of old, the Acqua Vergine is regarded to furnish some of the purest drinking-water in Rome, reputed for its restorative qualities. Many people to this day can be seen filling containers for drinking and cooking in its splendid fountains, including:

The fountains of Piazza Navona Piazza Navona 1.jpg
The fountains of Piazza Navona
Fontana della Barcaccia Fontana della Barcaccia restaurata, lato Scalinata Trinita dei Monti.jpg
Fontana della Barcaccia

See also

Notes

  1. Ovid, Fast. I.464
  2. Frontinus, de aquis I.4, 10, 18, 22; II.70, 84
  3. Pliny. Natural History. p. 36.121.
  4. "Rome's Newest Department Store Features an Ancient Aqueduct".
  5. 1 2 Lloyd, Robert (April 1979). "The Aqua Virgo, Euripus and Pons Agrippae". American Journal of Archaeology. 83 (2): 193–204. doi:10.2307/504901. JSTOR   504901. S2CID   191385140.
  6. CIL VI, 31564
  7. 1 2 Karmon, David (August 2005). "Restoring the Ancient Water Supply System in Renaissance Rome: The Popes, the civic administration, and the Acqua Virgine" (PDF). The Waters of Rome. 3: 1–13.
  8. 1 2 3 4 Dembskey, Evan (February 2009). "The Aqueducts of Ancient Rome" (PDF). Masters Thesis: 21–56.
  9. 1 2 3 4 5 6 7 8 9 10 11 Dembskey, Evan (February 2009). "The Aqueducts of Ancient Rome" (PDF). Masters Thesis: 21–56.
  10. 1 2 Dembskey, Evan (February 2009). "The Aqueducts of Ancient Rome" (PDF). Masters Thesis: 21–56.
  11. This work, probably written between 30-27 BCE but possibly even as late as 23 BCE, owes its survival to the palace scriptorium of Charlemagne .
  12. Karmon, David (August 2005). "Restoring the Ancient Water Supply System in Renaissance Rome: The Popes, the civic administration, and the Acqua Virgine" (PDF). The Waters of Rome. 3: 1–13.

41°54′37″N12°37′37″E / 41.91028°N 12.62694°E / 41.91028; 12.62694

Related Research Articles

Sextus Julius Frontinus was a prominent Roman civil engineer, author, soldier and senator of the late 1st century AD. He was a successful general under Domitian, commanding forces in Roman Britain, and on the Rhine and Danube frontiers. A novus homo, he was consul three times. Frontinus ably discharged several important administrative duties for Nerva and Trajan. However, he is best known to the post-Classical world as an author of technical treatises, especially De aquaeductu, dealing with the aqueducts of Rome.

<span class="mw-page-title-main">Trevi Fountain</span> Fountain in Rome, Italy

The Trevi Fountain is an 18th-century fountain in the Trevi district in Rome, Italy, designed by Italian architect Nicola Salvi and completed by Giuseppe Pannini in 1762 and several others. Standing 26.3 metres (86 ft) high and 49.15 metres (161.3 ft) wide, it is the largest Baroque fountain in the city and one of the most famous fountains in the world.

<span class="mw-page-title-main">Aqua Appia</span> First Roman aqueduct

The Aqua Appia was the first Roman aqueduct, constructed in 312 BC by the co-censors Gaius Plautius Venox and Appius Claudius Caecus, the same Roman censor who also built the important Via Appia.

<span class="mw-page-title-main">Acqua Vergine</span> Roman aqueduct

Acqua Vergine is one of several Roman aqueducts that deliver pure drinking water to Rome. Its name derives from its predecessor Aqua Virgo, which was constructed by Marcus Vipsanius Agrippa in 19 BC. Its terminal castellum is located at the Baths of Agrippa, and it served the vicinity of Campus Martius through its various conduits. In an effort to restore fresh water to Rome during the Renaissance, Pope Nicholas V, in 1453, renovated the main channels of the Aqua Virgo and added numerous secondary conduits under Campo Marzio. The original terminus, called a mostra, which means showpiece, was the stately, dignified wall fountain designed by Leon Battista Alberti in Piazza dei Crociferi. Due to several additions and modifications to the end-most points of the conduits during the years that followed, during the Renaissance and Baroque periods, the Acqua Vergine culminated in several magnificent mostre - the Trevi Fountain and the fountains of Piazza del Popolo.

<span class="mw-page-title-main">Piazza del Popolo</span> Urban square in Rome

Piazza del Popolo is a large urban square in Rome. The name in modern Italian literally means "People's Square", but historically it derives from the poplars after which the church of Santa Maria del Popolo, in the northeast corner of the piazza, takes its name.

<span class="mw-page-title-main">Roman aqueduct</span> Type of aqueduct built in ancient Rome

The Romans constructed aqueducts throughout their Republic and later Empire, to bring water from outside sources into cities and towns. Aqueduct water supplied public baths, latrines, fountains, and private households; it also supported mining operations, milling, farms, and gardens.

<span class="mw-page-title-main">Aqua Anio Novus</span> Ancient Roman aqueduct in Italy

Aqua Anio Novus was an ancient Roman aqueduct supplying the city of Rome. Like the Aqua Claudia, it was begun by emperor Caligula in 38 AD and completed in 52 AD by Claudius, who dedicated them both on August 1.

<span class="mw-page-title-main">Aqua Claudia</span> Ancient Roman aqueduct in Italy

Aqua Claudia was an ancient Roman aqueduct that, like the Aqua Anio Novus, was begun by Emperor Caligula in 38 AD and finished by Emperor Claudius in 52 AD.

<span class="mw-page-title-main">Aqua Julia</span>

The Aqua Julia is a Roman aqueduct built in 33 BC by Agrippa under Augustus to supply the city of Rome. It was repaired and expanded by Augustus from 11–4 BC.

<span class="mw-page-title-main">Acqua Felice</span> 16th century Roman aqueduct

The Acqua Felice is one of the aqueducts of Rome, completed in 1586 by Pope Sixtus V, whose birth name, which he never fully abandoned, was Felice Peretti. The first new aqueduct of early modern Rome, its source is at the springs at Pantano Borghese, off Via Casilina. Its length is fifteen miles (24 km), running underground for eight miles (13 km) from its source, first in the channel of Aqua Alexandrina, then alternating on the arches of the Aqua Claudia and the Aqua Marcia for seven miles (11 km) to its terminus at the Fontana dell'Acqua Felice on the Quirinal Hill, standing to one side of the Strada Pia, so as to form a piazza in this still new part of Rome. The engineer was Giovanni Fontana, brother of Sixtus' engineer-architect Domenico Fontana, who recorded that the very day the new pope entered the Lateran, he decided that he would bring water once again to the hills of Rome, which had remained waterless and sparsely inhabited, largely by monasteries, since the original ancient aqueducts had been destroyed in the sixth century. From the source, which Sixtus purchased, there was only a very small fall, and the work required an underground conduit as well as an aqueduct carried on arches.

<span class="mw-page-title-main">Aqua Traiana</span> 1st-century Roman aqueduct from Lake Bracciano to Rome

The Aqua Traiana was a 1st-century Roman aqueduct built by Emperor Trajan and inaugurated in 109 AD. It channelled water from sources around Lake Bracciano, 40 km (25 mi) north-west of Rome, to ancient Rome. It joined the earlier Aqua Alsietina to share a common lower route into Rome.

<span class="mw-page-title-main">Aqua Alsietina</span> Roman aqueduct

In Ancient Rome, the Aqua Alsietina was the earlier of the two western Roman aqueducts, erected sometime around 2 BC, during the reign of emperor Augustus. It was the only water supply for the Transtiberine region, on the right bank of the river Tiber until the Aqua Traiana was built.

De aquaeductu is a two-book official report given to the emperor Nerva or Trajan on the state of the aqueducts of Rome, and was written by Sextus Julius Frontinus at the end of the 1st century AD. It is also known as De Aquis or De Aqueductibus Urbis Romae. It is the earliest official report of an investigation made by a distinguished citizen on Roman engineering works to have survived. Frontinus had been appointed Water Commissioner by the emperor Nerva in AD 96.

<span class="mw-page-title-main">Aqua Alexandrina</span> Roman aqueduct, a landmark of Rome, Italy

The Aqua Alexandrina was a Roman aqueduct located in the city of Rome. The 22.4 km long aqueduct carried water from Pantano Borghese to the Baths of Alexander on the Campus Martius. It remained in use from the 3rd to the 8th century AD.

<span class="mw-page-title-main">Aqua Marcia</span> Ancient Roman aqueduct, built 144–140 BC

The Aqua Marcia is one of the longest of the eleven aqueducts that supplied the city of Rome. The aqueduct was built between 144–140 BC, during the Roman Republic. The still-functioning Acqua Felice from 1586 runs on long stretches along the route of the Aqua Marcia.

<span class="mw-page-title-main">Fontana delle Tartarughe</span> Fountain in Rome, Italy

The Fontana delle Tartarughe is a fountain of the late Italian Renaissance, located in Piazza Mattei, in the Sant'Angelo district of Rome, Italy. It was built between 1580 and 1588 by the architect Giacomo della Porta and the sculptor Taddeo Landini. The bronze turtles around the upper basin, usually attributed either to Gian Lorenzo Bernini or Andrea Sacchi, were added in either 1658 or 1659 when the fountain was restored.

<span class="mw-page-title-main">Fontana dell'Acqua Felice</span> Roman monumental fountain

The Fontana dell'Acqua Felice, also called the Fountain of Moses, is a monumental fountain located in the Quirinale District of Rome, Italy. It marked the terminus of the Acqua Felice aqueduct restored by Pope Sixtus V. It was designed by Domenico Fontana and built in 1585–88. It is located at the intersection of Largo Santa Susanna and Via Venti Settembre; across and diagonal from the Largo, is the church of Santa Susanna, while across Via Venti Settembre is the church of Santa Maria della Vittoria.

Acqua may refer to: