Brookhaven Graphite Research Reactor (BGRR) was a research reactor located at Brookhaven National Laboratory, a United States Department of Energy national laboratory located in Upton, New York, on Long Island, approximately 60 miles east of New York City. [1] The BGRR operated from 1950 until 1968 and has been fully decommissioned. [2]
The BGRR was the first nuclear reactor built after World War II for exclusively peaceful use. It was the first reactor constructed at BNL. The primary purposes of the BGRR were to produce neutrons for scientific use and to refine nuclear reactor design. The reactor provided a source of neutrons for multidisciplinary scientific research in materials science, chemistry, biology, and physics. [1]
Construction started on the reactor in 1947 and it became operational in August 1950. [3]
The BGRR was an air cooled, graphite moderated, uranium fueled research reactor. The 700 ton [3] reactor core consisted of a graphite cube 25 ft. on a side constructed from over 60,000 individual pieces of graphite. The reactor was cooled by air drawn through the core by three 1,000 hp. fans. [4] The biological shield was constructed of high-density concrete containing steel spheres and the notably dense iron ore limonite. [2] [5] As a research reactor, BGRR never had a power conversion system to generate electricity; heat from the nuclear reactions was exhausted through a tall stack to the atmosphere. [5]
The BGRR fuel elements were charged and discharged through graphite channel openings on the south pile face. Reactor operations were controlled by the position of 16 control rods that penetrated the reactor horizontally in directions parallel to the diagonals of the reactor base. [2] The initial fuel of the BGRR was natural uranium (NU) which utilized aluminum fuel elements that were 11 feet long and contained 33 NU fuel slugs each. During the operation with the NU fuel, there were 28 fuel element failures. [2]
In 1958, the NU fuel was replaced with highly enriched uranium (HEU) fuel clad with aluminum. Each HEU element was 24 inches long. [2] The fuel elements each contained 15 grams of HEU at 93% uranium-235. The fissionable material was a uranium-aluminum alloy slab, covered on the top and bottom by aluminum sheets at least 20 mils thick with the edges welded all around. [4]
The reactor was designed for 32 megawatts thermal, with a design-operating limit of 28 megawatts thermal for NU fuel. The reactor normally operated at approximately 20 megawatts with HEU. [2]
The reactor facility design included both neutron beam lines for experiments external to the reactor core and also pipe loops which allowed experiments to be conducted as fluids flowed through the operating reactor core. [1]
External to the reactor building, and shared with the subsequently constructed HFBR, was the Reactor Bypass Filter Facility (RBFF). This facility provided improved air cleaning prior to exhaust to the atmosphere in the unlikely event of a fuel element failure at either the BGRR or the HFBR. It also provided sufficient air cleaning to allow the use of air cooling as a method of combating a graphite fire at the BGRR. The facility was placed into operation in 1965. [4]
After operating for 18 years, BGRR was functionally obsolete. The BGRR was placed in standby mode in June 1968, then permanently shut down in 1969. All fuel was removed from the reactor and shipped to the Savannah River Site by 1972. The BGRR was fully decommissioned in 2012 following a 13-year, $148 million process. Contaminated materials were shipped to Nevada and Utah for disposal. [2] [3]
Several buildings and structures which housed the BGRR and associated facilities remain in safe storage or repurposed for other uses as of 2020. [5] Over its lifetime an estimated 25,000 individual experiments were performed by the reactor and accompanying scientists and engineers. The BGRR was the predecessor for the High Flux Beam Reactor also located at BNL. [1]
The red and white, 320-foot-tall exhaust stack constructed for the BGRR in 1949 and later shared with the HFBR was a distinctive landmark for the area until its demolition in 2020. [6]
A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. As of 2022, the International Atomic Energy Agency reports there are 422 nuclear power reactors and 223 nuclear research reactors in operation around the world.
Enriched uranium is a type of uranium in which the percent composition of uranium-235 has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238, uranium-235, and uranium-234. 235U is the only nuclide existing in nature that is fissile with thermal neutrons.
Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island, and was formally established in 1947 at the site of Camp Upton, a former U.S. Army base and Japanese internment camp. Its name stems from its location within the Town of Brookhaven, approximately 60 miles east of New York City. It is managed by Stony Brook University and Battelle Memorial Institute.
The Atomic Energy Research Establishment (AERE) was the main centre for atomic energy research and development in the United Kingdom from 1946 to the 1990s. It was created, owned and funded by the British Government.
Magnox is a type of nuclear power / production reactor that was designed to run on natural uranium with graphite as the moderator and carbon dioxide gas as the heat exchange coolant. It belongs to the wider class of gas-cooled reactors. The name comes from the magnesium-aluminium alloy, used to clad the fuel rods inside the reactor. Like most other "Generation I nuclear reactors", the Magnox was designed with the dual purpose of producing electrical power and plutonium-239 for the nascent nuclear weapons programme in Britain. The name refers specifically to the United Kingdom design but is sometimes used generically to refer to any similar reactor.
The B Reactor at the Hanford Site, near Richland, Washington, was the first large-scale nuclear reactor ever built. The project was a key part of the Manhattan Project, the United States nuclear weapons development program during World War II. Its purpose was to convert natural uranium metal into plutonium-239 by neutron activation, as plutonium is simpler to chemically separate from spent fuel assemblies, for use in nuclear weapons, than it is to isotopically enrich uranium into weapon-grade material. The B reactor was fueled with metallic natural uranium, graphite moderated, and water-cooled. It has been designated a U.S. National Historic Landmark since August 19, 2008 and in July 2011 the National Park Service recommended that the B Reactor be included in the Manhattan Project National Historical Park commemorating the Manhattan Project. Visitors can take a tour of the reactor by advance reservation.
Research reactors are nuclear fission-based nuclear reactors that serve primarily as a neutron source. They are also called non-power reactors, in contrast to power reactors that are used for electricity production, heat generation, or maritime propulsion.
The SLOWPOKE is a family of low-energy, tank-in-pool type nuclear research reactors designed by Atomic Energy of Canada Limited (AECL) beginning in the late 1960s. John W. Hilborn is the scientist most closely associated with their design. They are beryllium-reflected with a very low critical mass, but provide neutron fluxes higher than available from a small particle accelerator or other radioactive sources.
A high-temperature gas-cooled reactor (HTGR), is a nuclear reactor that uses a graphite moderator with a once-through uranium fuel cycle. The HTGR is a type of high-temperature reactor (HTR) that can conceptually have an outlet temperature of 750 °C (1,380 °F). The reactor core can be either a "prismatic block" or a "pebble-bed" core. The high temperatures enable applications such as process heat or hydrogen production via the thermochemical sulfur–iodine cycle.
The X-10 Graphite Reactor is a decommissioned nuclear reactor at Oak Ridge National Laboratory in Oak Ridge, Tennessee. Formerly known as the Clinton Pile and X-10 Pile, it was the world's second artificial nuclear reactor, and the first designed and built for continuous operation. It was built during World War II as part of the Manhattan Project.
A graphite-moderated reactor is a nuclear reactor that uses carbon as a neutron moderator, which allows natural uranium to be used as nuclear fuel.
The Radiation Laboratory at the US University of Massachusetts Lowell serves the Department of Applied Physics among others. The laboratory contains a 1 MW pool-type nuclear research reactor (UMLRR) that has been operating since 1974, a 300 kCi Co-60 gamma ray source, and a 5.5 MV Van de Graaff accelerator.
The Pakistan Atomic Research Reactor or (PARR) are two nuclear research reactors and two other experimental neutron sources located in the PINSTECH Laboratory, Nilore, Islamabad, Pakistan.
Chicago Pile-5 (CP-5) was the last of the line of Chicago Pile research reactors which started with CP-1 in 1942. The first reactor built on the Argonne National Laboratory campus in DuPage county, it operated from 1954-1979.
The Materials Testing Reactor (MTR) was an early nuclear reactor specifically designed to facilitate the conception and design of future reactors. It produced much of the foundational irradiation data that underlies the nuclear power industry. It operated in Idaho at the National Reactor Testing Station from 1952 to 1970.
High Flux Beam Reactor (HFBR) was a research reactor which was located at Brookhaven National Laboratory, a United States Department of Energy national laboratory located in Upton, New York, on Long Island, approximately 60 miles east of New York City. A successor to the Brookhaven Graphite Research Reactor, the HFBR operated from 1965 until 1996 and has been partially decommissioned.
Medical Research Reactor (MRR) was a research reactor which was located at Brookhaven National Laboratory, a United States Department of Energy national laboratory located in Upton, New York, on Long Island, approximately 60 miles east of New York City. The second of three reactors constructed at BNL, the MRR operated from 1959 until 2000 and has been partially decommissioned.
The TR-2 nuclear reactor, also known as the Westinghouse Test Reactor or Westinghouse Testing Reactor (WTR) was a small research and test reactor designed and manufactured by Westinghouse Electric Corporation at their Waltz Mill site near Madison, Pennsylvania, approximately 30 miles southeast of Pittsburgh. TR-2 was the first privately owned research and test reactor. The reactor suffered an accident which involved severe fuel damage in 1960.