Celastrus orbiculatus

Last updated

Oriental bittersweet
Celastrus orbiculatus.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Celastrales
Family: Celastraceae
Genus: Celastrus
Species:
C. orbiculatus
Binomial name
Celastrus orbiculatus

Celastrus orbiculatus is a woody vine of the family Celastraceae. [1] It is commonly called Oriental bittersweet, [2] [3] [4] as well as Chinese bittersweet, [3] Asian bittersweet, [4] round-leaved bittersweet, [4] and Asiatic bittersweet.

Contents

It is native to China, where it is the most widely distributed Celastrus species, and to Japan and Korea. [5] It was introduced into North America in 1879, [6] and is considered to be an invasive species in eastern North America. [7] It closely resembles the native North American species, Celastrus scandens , with which it will readily hybridize. [8]

Description

The defining characteristic of the deciduous plant is its vines: they are thin, spindly, and have silver to reddish brown bark. They are generally between 1 and 4 cm (0.4 and 1.6 in) in diameter. However, if growth is not disturbed, vines can exceed 10 cm (3.9 in) and when cut, will show age rings that can exceed 20 years.

When Celastrus orbiculatus grows by itself, it forms thickets; when it is near a tree the vines twist themselves around the trunk as high as 40 feet. The encircling vines have been known to strangle the host tree to death or break branches from the excess weight, which is also true of the slower-growing American species, C. scandens. The leaves are round and glossy, 2–12 cm (0.8–4.7 in) long, have toothed margins and grow in alternate patterns along the vines.

Small green flowers are borne on axillary cymes. The fruit is a three-valved capsule, which dehisces to reveal bright red arils that cover the seeds. All parts of the plant are poisonous. [9]

Range and habitat

Due to systematic disturbances to eastern forests for wood production and recreation, Oriental bittersweet has naturalized to landscapes, roadsides, and woodlands of eastern North America. In the United States, it can be found as far south as Louisiana, as far north as Maine, and as far west as the Rocky Mountains. [10] [11] It prefers mesic woods, where it has been known to eclipse native plants. [12]

Cultivation

Celastrus orbiculatus is cultivated as an ornamental plant. In the UK, it has gained the Royal Horticultural Society's Award of Garden Merit. [13]

As an invasive species

Oriental bittersweet is a strong competitor in its environment, and its dispersal has endangered the survival of several other species. One attribute that contributes to the success of this species is having attractively colored fruit. As a result, it is eaten by mammals and birds, which excrete the seeds to different locations.

The introduction of Oriental bittersweet into new areas threatens the local flora because the native plants then have a strong competitor in the vicinity. The species is native to Eastern Asia, but was introduced to the US for aesthetic purposes. [14] It has been used in floral arrangements, and because of improper disposal the plant has been recklessly introduced into areas, affecting the ecology of over 33 states from Georgia to Wisconsin, and parts of the Appalachians. [14] The organism grows primarily in the perimeter of highly vegetative areas, allowing it to readily access the frontier of resources. Oriental bittersweet's ability to grow in a variety of environments has proven to be detrimental to many plant species along the Appalachian mountains and is moving more towards the West as time progresses. [15] [16] [17]

This map shows the identified locations of the Oriental bittersweet as of 2012 (provided by the United States Department of Agriculture). Map of Oriental Bittersweet Distribution.png
This map shows the identified locations of the Oriental bittersweet as of 2012 (provided by the United States Department of Agriculture).

Oriental bittersweet employs multiple invasive and dispersal strategies allowing it to outcompete the surrounding plant species in non-native regions. This is a strong reason why the control of the species presents difficulties to manage. [18] The plant's invasion has created diverse ecological, managerial, and agricultural complications making it a focus of environmental conservation efforts.

Response to abiotic factors

Sunlight is one of the most vital resources for Oriental bittersweet. As demonstrated by controlled experiments, Oriental bittersweet grows more rapidly in environments that fare a higher amount of sunlight. In a study where populations received above 28% sunlight, it exhibited a higher amount of growth and biomass. [19] This study used layers of woven cloth to control the percentage of available sunlight. In this experiment, the total living length (TLL, the living length of stems on each plant) increased when Oriental bittersweet was exposed to higher amounts of sunlight. [19] If Oriental bittersweet was exposed to 2% sunlight, then the TLL ratio decreased. [19] Oriental bittersweet can increase in biomass by 20% when exposed to 28% sunlight rather than 2%. The plant's strong response to sunlight parallels its role as an invasive species, as it can outcompete other species by fighting for and receiving more sunlight. Although growth ratios decrease when Oriental bittersweet is exposed to 2% sunlight (due to a decrease in photosynthetic ability), it still exhibited a 90% survival rate. [20] Experimental data has indicated that Oriental bittersweet has a strong ability to tolerate low light conditions "ranging on average from 0.8 to 6.4% transmittance". [21] In comparison to its congener American bittersweet, when placed in habitats with little light, Oriental bittersweet was found to have increased height, increased aboveground biomass, and increased total leaf mass. [20] [21] Oriental bittersweet, in comparison to many other competing species, is the better competitor in attaining sunlight.

Temperature is another variable that plays a role in Oriental bittersweet's growth and development as an invasive species. Unlike other invasive species, high summer temperatures have been shown to inhibit plant growth. Oriental bittersweet has also been shown to be positively favored in habitats experiencing high annual precipitation. This is noteworthy as it contrasts sharply with other common invasive species such as Berberis thunbergii and Euonymus alatus which have been shown to have a decreased probability of establishment when placed in environments experiencing high annual precipitation. [22]

Compared to other invasive species analyzed in a recent study, Oriental bittersweet was more prevalent in landscapes dominated by developed areas. [22] Open and abandoned habitats were also found to positively influence the spread of the plant compared to other invasive species. [22] Additionally the species is heavily favored in edge habitats. This ability to live in various environmental conditions raises the concern of the plant's dispersal.

Biotic interactions

Mutualistic interactions

A determining factor regarding Oriental bittersweet's ability to outcompete native plant species is its ability to form mutualistic associations with mycorrhizal fungi, specifically arbuscular mycorrhizal fungi. [23] Oriental bittersweet growth is highly dependent on the absorption of phosphorus. In a recent study, growth was found to be greater when arbuscular mycorrhizal fungi were present in soil with low phosphorus concentrations, compared to when the plant was placed in an environment with high soil phosphorus concentrations with no arbuscular mycorrhizal fungi were present. [23] The results from this study show the importance of symbiotic relationships in allowing Oriental bittersweet to effectively uptake nutrients from its surroundings. Additionally, the symbiotic relationship with mycorrhizae allows this invasive species to utilize less of its energy in root biomass to absorb necessary nutrients. This may be crucial in allowing Oriental bittersweet to act as an effective invasive species as it is able to allocate more energy to its aboveground biomass instead of its belowground biomass; a significant point regarding this plant's invasiveness relies on photosynthetic ability and reproductive capacity. [23] The symbiotic relationship established with fungi only occurs with arbuscular mycorrhizal fungi, while no such relationship has been observed with ectomycorrhizal fungi. These studies have shown that suitable mycorrhizae are a strong determining factor regarding whether a plant can survive in its environment. [23] Studies have also shown evidence that "introduced plant species can modify microbial communities in the soil surrounding not only their own roots, but also the roots of neighboring plants, thereby altering competitive interactions among the plant species". [23] This may be a key invasive trait for Oriental bittersweet, as it allows the plant to negatively affect surrounding plant life by altering their underground symbiotic microbial relationships. [23] However, further experimentation is necessary to determine whether this organism employs this trait as an invasive strategy.

Competitive interactions

One of Oriental bittersweet's invasive characteristics is its effective utilization of energy to increase plant height, thus giving it a competitive advantage over similar plants. A study conducted in 2006 showed that, in comparison to its congener American bittersweet, Oriental bittersweet had increased height, increased aboveground biomass, and increased total leaf mass. [20] This is not to say that Oriental bittersweet outperformed American bittersweet in all criteria: in comparison to Oriental bittersweet, "American bittersweet had increased stem diameter, single leaf area, and leaf mass to stem mass ratio", suggestive that American bittersweet focused growth on ulterior portions of the plant rather than plant characteristics emphasized by Oriental bittersweet such as stem length. [20] This is significant as height plays a major role in allowing Oriental bittersweet to outcompete surrounding vegetation. [20] Focusing growth on stem length allows it to be in a strong position to absorb light, while also negatively impacting surrounding plant life by creating shade-like conditions.

The species' vine-like morphology has also been shown to have negative effects on surrounding plant life. For example, evidence suggests that this morphological characteristic facilitates its ability to girdle nearby trees, creating an overall negative effect on the trees such as making them more susceptible to ice damage or damaging branches due to the weight of the plant. [24] Additionally, studies have suggested that Oriental bittersweet is capable of siphoning away nutrients from surrounding plants. The study found this to occur in a variety of environments, suggestive of both the plant's increased relative plasticity as well as increased nutrient uptake. [21]

One study observed that the presence of Oriental bittersweet increases the alkalinity of the surrounding soil, a characteristic of many successful invasive plant species. [24] This alters the availability of essential nutrients and hinders the nutrient uptake ability of native plants. Though the relationship between Oriental bittersweet and the alkalinity of the soil is consistent, there are a number of proposed mechanisms for this observation. The plant's significant above-ground biomass demands the preferential uptake of nitrate over ammonia, leading to soil nitrification. It also has a high cation-exchange capacity, which also supports the larger biomass. Either of these functions could explain the increased alkalinity, but further experimentation is needed to pinpoint the exact mechanism. [24]

Hybridization

Another major threat posed by Oriental bittersweet is hybridization with American bittersweet. Hybridization occurs readily between American bittersweet females and Oriental bittersweet males, though the opposite is known to occur to a lesser extent. The resulting hybrid species is fully capable of reproduction. [25] In theory, if the Oriental bittersweet invasion continues to worsen, widespread hybridization could genetically disrupt the entire American bittersweet population, possibly rendering it extinct. [15]

Management

To minimize the effects of Oriental bittersweet's invasion into North American habitats, its growth and dispersal must be tightly managed. Early detection is essential for successful conservation efforts. To reduce further growth and dispersal, above-ground vegetation is cut and any foliage is sprayed with triclopyr, a common herbicide. Glyphosate is another chemical method of control. These two herbicides are usually sprayed directly on the plants in late fall to prevent other plants from being targeted. These steps must be repeated annually, or whenever regrowth is observed. [26] Triclopyr is non-toxic to most animal and insect species and slightly toxic to some species of fish, but it has a half-life of less than a day in water, making it safe and effective for field use. [26] [27] Mechanical methods have also been used, but they are not as effective due to the difficulty of completely removing the root. [28] There is also no biological control agent available in helping control this species. [29] Mechanical and chemical methods are being used, but they are only temporarily fixing the situation.

Phytochemicals

Bicelaphanol A is a neuroprotective dimeric-trinorditerpene isolated from the bark of Celastrus orbiculatus. [30]

Uses

Despite the modest toxicity of its fruit, some livestock browse on the leaves without effect. Its vines, which are durable and tough, are a good source of weaving material for baskets. The fibrous inner bark can be used to make strong cordage.

Related Research Articles

<span class="mw-page-title-main">Mycelium</span> Vegetative part of a fungus

Mycelium is a root-like structure of a fungus consisting of a mass of branching, thread-like hyphae. Its normal form is that of branched, slender, entangled, anastomosing, hyaline threads. Fungal colonies composed of mycelium are found in and on soil and many other substrates. A typical single spore germinates into a monokaryotic mycelium, which cannot reproduce sexually; when two compatible monokaryotic mycelia join and form a dikaryotic mycelium, that mycelium may form fruiting bodies such as mushrooms. A mycelium may be minute, forming a colony that is too small to see, or may grow to span thousands of acres as in Armillaria.

<span class="mw-page-title-main">Mycorrhiza</span> Fungus-plant symbiotic association

A mycorrhiza is a symbiotic association between a fungus and a plant. The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, the plant root system and its surroundings. Mycorrhizae play important roles in plant nutrition, soil biology, and soil chemistry.

<span class="mw-page-title-main">Vine</span> Plant with a growth habit of trailing or scandent stems or runners

A vine is any plant with a growth habit of trailing or scandent stems, lianas, or runners. The word vine can also refer to such stems or runners themselves, for instance, when used in wicker work.

<i>Celastrus</i> Genus of plants

Celastrus, commonly known as staff vine, staff tree or bittersweet, is the type genus of the family Celastraceae; it contains over 40 species of shrubs and vines, which have a wide distribution in East Asia, Australasia, Africa, and the Americas.

<span class="mw-page-title-main">Arbuscular mycorrhiza</span> Symbiotic penetrative association between a fungus and the roots of a vascular plant

An arbuscular mycorrhiza (AM) is a type of mycorrhiza in which the symbiont fungus penetrates the cortical cells of the roots of a vascular plant forming arbuscules. Arbuscular mycorrhiza is a type of endomycorrhiza along with ericoid mycorrhiza and orchid mycorrhiza. They are characterized by the formation of unique tree-like structures, the arbuscules. In addition, globular storage structures called vesicles are often encountered.

Microbial inoculants, also known as soil inoculants or bioinoculants, are agricultural amendments that use beneficial rhizosphericic or endophytic microbes to promote plant health. Many of the microbes involved form symbiotic relationships with the target crops where both parties benefit (mutualism). While microbial inoculants are applied to improve plant nutrition, they can also be used to promote plant growth by stimulating plant hormone production. Although bacterial and fungal inoculants are common, inoculation with archaea to promote plant growth is being increasingly studied.

<i>Leymus arenarius</i> Species of flowering plant in the grass family Poaceae

Leymus arenarius is a psammophilic (sand-loving) species of grass in the family Poaceae, native to the coasts of Atlantic and Northern Europe. Leymus arenarius is commonly known as sand ryegrass, sea lyme grass, or simply lyme grass.

<i>Celastrus scandens</i> Species of vine

Celastrus scandens, commonly called American bittersweet or bittersweet, is a species of Celastrus that blooms mostly in June and is commonly found on rich, well-drained soils of woodlands.

<span class="mw-page-title-main">Mycorrhizal network</span> Underground fungal networks that connect individual plants together

A mycorrhizal network is an underground network found in forests and other plant communities, created by the hyphae of mycorrhizal fungi joining with plant roots. This network connects individual plants together. Mycorrhizal relationships are most commonly mutualistic, with both partners benefiting, but can be commensal or parasitic, and a single partnership may change between any of the three types of symbiosis at different times.

<span class="mw-page-title-main">Mycorrhizal fungi and soil carbon storage</span> Terrestrial ecosystem

Soil carbon storage is an important function of terrestrial ecosystems. Soil contains more carbon than plants and the atmosphere combined. Understanding what maintains the soil carbon pool is important to understand the current distribution of carbon on Earth, and how it will respond to environmental change. While much research has been done on how plants, free-living microbial decomposers, and soil minerals affect this pool of carbon, it is recently coming to light that mycorrhizal fungi—symbiotic fungi that associate with roots of almost all living plants—may play an important role in maintaining this pool as well. Measurements of plant carbon allocation to mycorrhizal fungi have been estimated to be 5 to 20% of total plant carbon uptake, and in some ecosystems the biomass of mycorrhizal fungi can be comparable to the biomass of fine roots. Recent research has shown that mycorrhizal fungi hold 50 to 70 percent of the total carbon stored in leaf litter and soil on forested islands in Sweden. Turnover of mycorrhizal biomass into the soil carbon pool is thought to be rapid and has been shown in some ecosystems to be the dominant pathway by which living carbon enters the soil carbon pool.

<span class="mw-page-title-main">Ectomycorrhiza</span> Non-penetrative symbiotic association between a fungus and the roots of a vascular plant

An ectomycorrhiza is a form of symbiotic relationship that occurs between a fungal symbiont, or mycobiont, and the roots of various plant species. The mycobiont is often from the phyla Basidiomycota and Ascomycota, and more rarely from the Zygomycota. Ectomycorrhizas form on the roots of around 2% of plant species, usually woody plants, including species from the birch, dipterocarp, myrtle, beech, willow, pine and rose families. Research on ectomycorrhizas is increasingly important in areas such as ecosystem management and restoration, forestry and agriculture.

Biomass partitioning is the process by which plants divide their energy among their leaves, stems, roots, and reproductive parts. These four main components of the plant have important morphological roles: leaves take in CO2 and energy from the sun to create carbon compounds, stems grow above competitors to reach sunlight, roots absorb water and mineral nutrients from the soil while anchoring the plant, and reproductive parts facilitate the continuation of species. Plants partition biomass in response to limits or excesses in resources like sunlight, carbon dioxide, mineral nutrients, and water and growth is regulated by a constant balance between the partitioning of biomass between plant parts. An equilibrium between root and shoot growth occurs because roots need carbon compounds from photosynthesis in the shoot and shoots need nitrogen absorbed from the soil by roots. Allocation of biomass is put towards the limit to growth; a limit below ground will focus biomass to the roots and a limit above ground will favor more growth in the shoot.

<i>Rhizophagus irregularis</i> Arbuscular mycorrhizal fungus used as a soil inoculant

Rhizophagus irregularis is an arbuscular mycorrhizal fungus used as a soil inoculant in agriculture and horticulture. Rhizophagus irregularis is also commonly used in scientific studies of the effects of arbuscular mycorrhizal fungi on plant and soil improvement. Until 2001, the species was known and widely marketed as Glomus intraradices, but molecular analysis of ribosomal DNA led to the reclassification of all arbuscular fungi from Zygomycota phylum to the Glomeromycota phylum.

<span class="mw-page-title-main">Ectomycorrhizal extramatrical mycelium</span>

Ectomycorrhizal extramatrical mycelium is the collection of filamentous fungal hyphae emanating from ectomycorrhizas. It may be composed of fine, hydrophilic hypha which branches frequently to explore and exploit the soil matrix or may aggregate to form rhizomorphs; highly differentiated, hydrophobic, enduring, transport structures.

Dark septate endophytes (DSE) are a group of endophytic fungi characterized by their morphology of melanized, septate, hyphae. This group is likely paraphyletic, and contain conidial as well as sterile fungi that colonize roots intracellularly or intercellularly. Very little is known about the number of fungal taxa within this group, but all are in the Ascomycota. They are found in over 600 plant species and across 114 families of angiosperms and gymnosperms and co-occur with other types of mycorrhizal fungi. They have a wide global distribution and can be more abundant in stressed environments. Much of their taxonomy, physiology, and ecology are unknown.

<span class="mw-page-title-main">Mycorrhiza helper bacteria</span> Group of organisms

Mycorrhiza helper bacteria (MHB) are a group of organisms that form symbiotic associations with both ectomycorrhiza and arbuscular mycorrhiza. MHBs are diverse and belong to a wide variety of bacterial phyla including both Gram-negative and Gram-positive bacteria. Some of the most common MHBs observed in studies belong to the phylas Pseudomonas and Streptomyces. MHBs have been seen to have extremely specific interactions with their fungal hosts at times, but this specificity is lost with plants. MHBs enhance mycorrhizal function, growth, nutrient uptake to the fungus and plant, improve soil conductance, aid against certain pathogens, and help promote defense mechanisms. These bacteria are naturally present in the soil, and form these complex interactions with fungi as plant root development starts to take shape. The mechanisms through which these interactions take shape are not well-understood and needs further study.

Mycorrhizal amelioration of heavy metals or pollutants is a process by which mycorrhizal fungi in a mutualistic relationship with plants can sequester toxic compounds from the environment, as a form of bioremediation.

<i>Funneliformis mosseae</i> Species of fungus

Funneliformis mosseae is a species of fungus in the family Glomeraceae, which is an arbuscular mycorrhizal (AM) fungi that forms symbiotic relationships with plant roots. Funneliformis mosseae has a wide distribution worldwide, and can be found in North America, South America, Europe, Africa, Asia and Australia. Funneliformis are characterized by having an easily visible septum in the area of the spore base and are often cylindrical or funnel-shaped. Funneliformis mosseae similarly resembles Glomus caledonium, however the spore wall of Funneliformis mosseae contains three layers, whereas Gl. caledonium spore walls are composed of four layers. Funneliformis is an easily cultivated species which multiplies well in trap culture, along with its high distribution, F. mosseae is not considered endangered and is often used for experimental purposes when combined with another host.

The International Collection of (Vesicular) Arbuscular Mycorrhizal Fungi (INVAM) is the largest collection of living arbuscular mycorrhizal fungi (AMF) and includes Glomeromycotan species from 6 continents. Curators of INVAM acquire, grow, identify, and elucidate the biology, taxonomy, and ecology of a diversity AMF with the mission to expand availability and knowledge of these symbiotic fungi. Culturing AMF presents difficulty as these fungi are obligate biotrophs that must complete their life cycle while in association with their plant hosts, while resting spores outside of the host are vulnerable to predation and degradation. Curators of INVAM have thus developed methods to overcome these challenges to increase the availability of AMF spores. The inception of this living collection of germplasm occurred in the 1980s and it takes the form of fungi growing in association with plant symbionts in the greenhouse, with spores preserved in cold storage within their associated rhizosphere. AMF spores acquired from INVAM have been used extensively in both basic and applied research projects in the fields of ecology, evolutionary biology, agroecology, and in restoration. INVAM is umbrellaed under the Kansas Biological Survey at The University of Kansas, an R1 Research Institution. The Kansas Biological Survey is also home to the well-known organization Monarch Watch. INVAM is currently located within the tallgrass prairie ecoregion, and many collaborators and researchers associated with INVAM study the role of AMF in the mediation of prairie biodiversity. James Bever and Peggy Schultz are the Curator and Director of Operation team, with Elizabeth Koziol and Terra Lubin as Associate Curators.

<i>Glomus macrocarpum</i> Species of fungus

Glomus macrocarpum is a vesicular-arbuscular endomycorrhizal plant pathogen in the Glomeraceae family of fungi. Also occasionally known as Endogone macrocarpa, G. macrocarpum is pathogenic to multiple plants, including tobacco and chili plants. G. macrocarpum was first discovered in the French woodlands by the Tulasne brothers in the early to mid 1800s. Their first known description of G. macrocarpum was published in the New Italian Botanical Journal in 1845. G. macrocarpum has since been documented in over 26 countries, including Australia, China, and Japan for example. G. macrocarpum is frequently found in grassy meadows, forests, greenhouses, and fruit orchards. It is known for its small, round-edged, and light brown to yellow-brown sporocarp. G. macrocarpum is sometimes known as the Glomerales truffle.

References

  1. Hou, D. (1955). "A revision of the genus Celastrus". Annals of the Missouri Botanical Garden. 42 (3). Missouri Botanical Garden Press: 215–302. doi:10.2307/2394657. JSTOR   2394657.
  2. Lee, Sangtae; Chang, Kae Sun, eds. (2015). English Names for Korean Native Plants (PDF). Pocheon: Korea National Arboretum. p. 402. ISBN   978-89-97450-98-5 . Retrieved 15 March 2019 via Korea Forest Service.
  3. 1 2 Weeks, Sally S.; Weeks, Harmon P. (Jr.) (2011). Shrubs and woody vines of Indiana and the Midwest: Identification, wildlife values, and landscaping use. West Lafayette: Purdue University Press. p. 392. ISBN   9781557536105.
  4. 1 2 3 Czarapata, Elizabeth J. (2005). Invasive plants of the upper Midwest: An illustrated guide to their identification and control. Madison: University of Wisconsin Press. p. 45. ISBN   9780299210540.
  5. Zhang, Zhixiang; Funston, Michele. "Celastrus orbiculatus". Flora of China. Vol. 11 via eFloras.org, Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria, Cambridge, MA.
  6. "Celastrus orbiculatus – Oriental Bittersweet Vine". Conservation New England. Archived from the original on 18 March 2016. Retrieved 31 October 2009.
  7. "Celastrus orbiculatus". County-level distribution map from the North American Plant Atlas (NAPA). Biota of North America Program (BONAP). 2014.
  8. White, Orland E.; Wray M. Bowden (1947). "Oriental and American Bittersweet Hybrids". Journal of Heredity . 38 (4): 125–128. doi:10.1093/oxfordjournals.jhered.a105705. PMID   20242535.
  9. Uva, Richard H.; Neal, Joseph C.; Ditomaso, Joseph M. (1997). Weeds of The Northeast. Ithaca, New York: Cornell University Press. pp. 336–337.
  10. Hutchison, Max (1990). "Vegetation Management Guideline: Round-leaved bittersweet". Vegetation Management Manual. Illinois Natural History Survey. Archived from the original on 7 September 2005.
  11. Kurtz, Cassandra M. (2018). An Assessment of Oriental Bittersweet in Northern U.S. Forests. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. Retrieved 20 November 2018.
  12. Archana Pande; Carol L. Williams; Christopher L. Lant; David J. Gibson. "Using map algebra to determine the mesoscale distribution of invasive plants: the case of Celastrus orbiculatus in Southern Illinois, USA" (PDF). Biol Invasions:2006. Archived from the original (PDF) on 12 June 2010.
  13. "Celastrus orbiculatus Hermaphrodite Group". rhs.org. Royal Horticultural Society. Retrieved 12 April 2020.
  14. 1 2 McNab, W. H.; Loftis, D. L. (2002). "Probability of occurrence and habitat features for oriental bittersweet in an oak forest in the southern Appalachian mountains, USA". Forest Ecology and Management. 155 (1–3): 45–54. doi:10.1016/S0378-1127(01)00546-1.
  15. 1 2 Jones, Chad C. (2012). "Challenges in predicting the future distributions of invasive plant species". Forest Ecology and Management. 284: 69–77. doi:10.1016/j.foreco.2012.07.024.
  16. Albright, Thomas P.; Anderson, Dean P.; Keuler, Nicholas S.; Pearson, Scott M.; Turner, Monica G. (2009). "The spatial legacy of introduction:Celastrus orbiculatusin the southern Appalachians, USA". Journal of Applied Ecology. 46 (6): 1229–1238. doi:10.1111/j.1365-2664.2009.01707.x.
  17. 1 2 USDA, NRCS (n.d.). "Celastrus orbiculatus". The PLANTS Database (plants.usda.gov). Greensboro, North Carolina: National Plant Data Team.
  18. Greenberg, C. H.; Smith, L. M.; Levey, D. J. (2001). "Fruit fate, seed germination and growth of an invasive vine- an experimental test of 'sit and wait' strategy". Biological Invasions. 3 (4): 364–372. doi:10.1023/A:1015857721486. S2CID   6742817.
  19. 1 2 3 Ellsworth, J.W.; Harrington, R.A.; Fownes, J.H (2004). "Survival, growth and gas exchange of Celastrus orbiculatus seedlings in sun and shade". American Midland Naturalist. 151 (2): 233–240. doi:10.1674/0003-0031(2004)151[0233:SGAGEO]2.0.CO;2. JSTOR   3566741. S2CID   85822380.
  20. 1 2 3 4 5 Leicht SA, Silander JA (July 2006). "Differential responses of invasive Celastrus orbiculatus (Celastraceae) and native C. scandens to changes in light quality". Am. J. Bot. 93 (7): 972–7. doi:10.3732/ajb.93.7.972. PMID   21642161.
  21. 1 2 3 Leicht-Young, Stacey A.; Pavlovic, Noel B.; Grundel, Ralph; Frohnapple, Krystalynn J. (2007). "Distinguishing Native (Celastrus Scandens L.) and Invasive (C. Orbiculatus Thunb.) Bittersweet Species Using Morphological Characteristics". The Journal of the Torrey Botanical Society. 134 (4): 441–50. doi:10.3159/07-RA-028.1. JSTOR   20063940. S2CID   86456782.
  22. 1 2 3 Ibáñez, Inés; Silander, John A.; Wilson, Adam M.; Lafleur, Nancy; Tanaka, Nobuyuki; Tsuyama, Ikutaro (2009). "Multivariate forecasts of potential distributions of invasive plant species". Ecological Applications. 19 (2): 359–75. doi:10.1890/07-2095.1. PMID   19323195.
  23. 1 2 3 4 5 6 Lett, Carly N.; Dewald, Laura E.; Horton, Jonathan (2011). "Mycorrhizae and soil phosphorus affect growth of Celastrus orbiculatus". Biological Invasions. 13 (10): 2339. doi:10.1007/s10530-011-0046-3. S2CID   22309836.
  24. 1 2 3 Leicht-Young, Stacey A.; O'Donnell, Hillary; Latimer, Andrew M.; Silander, John A. (2009). "Effects of an Invasive Plant Species, Celastrus orbiculatus, on Soil Composition and Processes". The American Midland Naturalist. 161 (2): 219. doi:10.1674/0003-0031-161.2.219. S2CID   12833005.
  25. Pavlovic, N. B.; Young, S. L. (2007). "Distinguishing an alien invasive vine from the native congener: morphology, genetics, and hybridization" (PDF). United States Geological Survey, Ecosystem Health and Restoration Branch.
  26. 1 2 Pavlovic, N. Leicht-Young, S., Morford, D, & Mulcorney, N. (2011). "To Burn or Not to Burn Oriental Bittersweet: A Fire Manager's Conundrum" (PDF). United States Geological Survey, Lake Michigan Ecological Research Station, Great Lakes Science Center. Archived from the original (PDF) on 9 March 2013. Retrieved 21 April 2013.{{cite web}}: CS1 maint: multiple names: authors list (link)
  27. Ganapathy, Carissa (1997). "Environmental Fate of Triclopyr" (PDF). Environmental Monitoring and Pest Management Branch, Department of Pesticide Regulation. Archived from the original (PDF) on 13 June 2009. Retrieved 21 April 2013.
  28. Swearingen, J., Reshetiloff, K., Slattery B., & Zwicker, S (2002). "Plant Invaders of Mid-Atlantic Natural Areas". Plant Invaders of Mid-Atlantic Natural Areas. National Park Service and U.S. Fish & Wildlife Service. p. 82.{{cite web}}: CS1 maint: multiple names: authors list (link)
  29. Dryer, Glenn D. (2003). "Oriental Bittersweet: Element Stewardship Abstract". Wildland Weeds Management & Research Program, Weeds on the Web. Archived from the original on 23 October 2008.
  30. Ly, Wang; J, Wu; Z, Yang; Xj, Wang; Y, Fu; Sz, Liu; Hm, Wang; Wl, Zhu; Hy, Zhang (26 April 2013). "(M)- and (P)-bicelaphanol A, dimeric trinorditerpenes with promising neuroprotective activity from Celastrus orbiculatus". Journal of Natural Products. 76 (4): 745–9. doi:10.1021/np3008182. PMID   23421714 . Retrieved 16 September 2020.