Comet dust refers to cosmic dust that originates from a comet. Comet dust can provide clues to comets' origin. When the Earth passes through a comet dust trail, it can produce a meteor shower.
The majority of dust from comet activity is sub-micrometer [1] to roughly micrometer in size. [2] [3] However, this fraction is short-lived, as radiation pressure causes them to blow out of the Solar System [4] [5] or spiral inwards. [6] [7]
The next size class is large, "fluffy" [4] [5] or "cluster-type" [8] aggregates of the above grains. These are typically 20-100 micrometers, a size not arbitrary but observed [9] as the porous aggregates tend to fracture [10] or compact. [8] [11] [12]
Larger particles are micrometeoroids, [13] [14] not dust. [15] [16] In the absence of a definition from the IAU, [17] [18] groups devised their own definitions of dust: smaller than 100 micrometers, [19] 50, [20] 40, [21] 30, [22] and 20 microns, [23] and <10 μm. [24] [25] [26] [16] Some of these dust/micrometeorite definitions are approximate or ambiguous, [27] [28] [29] some overlapping or self-conflicting. [30] [23] [22]
The IAU released a formal statement in 2017. Meteoroids are 30 micrometers to 1 meter, dust is smaller, and the term "micrometeoroid" is discouraged (though not micrometeorite). [31] The IMO noted the new definition, [32] but still displays a prior definition on their site. [33] The Meteoritical Society site retains its prior definition, 0.001 cm. [34] The AMS has posted no rigorous definition. [35] [36]
Dust is generally chondritic in composition. Its monomers contain mafic silicates, such as olivine and pyroxene. [37] Silicates are rich in high-condensation temperature forsterite and enstatite. [27] As these condense quickly, they tend to form very small particles, not merging droplets.
As with chondritic meteoroids, particles contain Fe(Ni) sulfide [38] [39] and GEMS (glass with embedded metal and sulfides) [38]
Various amounts of organics (CHON) are present. [40] [41] [42] Though organics are cosmically abundant, and were widely predicted to exist in comets, they are spectrally indistinct in most telescopes. Organics were only confirmed via mass spectrometry during the Halley flybys. [43] [44] Some organics are in the form of PAHs (Polycyclic Aromatic Hydrocarbons). [45] [19] [46] [47] [48]
Very small inclusions of presolar grains (PSGs) may be found. [27] [48]
The models for the origin of comets are: [49]
Bulk properties of the comet dust such as density as well as the chemical composition can distinguish between the models. For example, the isotopic ratios of comet and of interstellar dust are very similar, indicating a common origin.
The 1) interstellar model says that ices formed on dust grains in the dense cloud that preceded the Sun. The mix of ice and dust then aggregated into a comet without appreciable chemical modification. J. Mayo Greenberg first proposed this idea in the 1970s. [50] [51]
In the 2) Solar System model, the ices that formed in the interstellar cloud first vaporized as part of the accretion disk of gas and dust around the protosun. The vaporized ices later resolidified and assembled into comets. So the comets in this model would have a different composition than those comets that were made directly from interstellar ice.
The 3) primordial rubble pile model for comet formation says that comets agglomerate in the region where Jupiter was forming.
Stardust's discovery of crystalline silicates in the dust of comet Wild 2 implies that the dust formed above glass temperature (> 1000 K) in the inner disk region around a hot young star, and was radially mixed in the solar nebula from the inner regions a larger distance from the star or the dust particle condensed in the outflow of evolved red giants or supergiants. The composition of the dust of comet Wild 2 is similar to the composition of dust found in the outer regions of the accretion disks around newly-forming stars. [52]
A comet and its dust allow investigation of the Solar System beyond the main planetary orbits. Comets are distinguished by their orbits; long period comets have long elliptical orbits, randomly inclined to the plane of the Solar System, and with periods greater than 200 years. Short period comets are usually inclined less than 30 degrees to the plane of the Solar System, revolve around the Sun in the same counterclockwise direction as the planets orbit, and have periods less than 200 years.
A comet will experience a range of diverse conditions as it traverses its orbit. For long period comets, most of the time it will be so far from the Sun that it will be too cold for evaporation of ices to occur. When it passes through the terrestrial planet region, evaporation will be rapid enough to blow away small grains, but the largest grains may resist entrainment and stay behind on the comet nucleus, beginning the formation of a dust layer. Near the Sun, the heating and evaporation rate will be so great, that no dust can be retained. Therefore, the thickness of dust layers covering the nuclei of a comet can indicate how closely and how often a comet's perihelion travels are to the Sun. If a comet has an accumulation of thick dust layers, it may have frequent perihelion passages that don't approach the Sun too closely.
A thick accumulation of dust layers might be a good description of all of the short period comets, as dust layers with thicknesses on the order of meters are thought to have accumulated on the surfaces of short-period comet nuclei. The accumulation of dust layers over time would change the physical character of the short-period comet. A dust layer both inhibits the heating of the cometary ices by the Sun (the dust is impenetrable by sunlight and a poor conductor of heat), and slows the loss of gases from the nucleus below. A comet nucleus in an orbit typical of short period comets would quickly decrease its evaporation rate to the point that neither a coma or a tail would be detectable and might appear to astronomers as a low-albedo near-Earth asteroid.
Dust particles, aided by ices and organics, form "aggregates" [27] [38] [53] (less often, "agglomerates" [54] ) of 30 to hundreds of micrometers. These are fluffy, [19] [55] due to the imperfect packing of cluster-type (large) dust particles, and their subsequent, imperfect packing into aggregates. [56]
The next size category is pebbles, of millimeters to centimeters scale. [57] [58] [59] Pebbles were inferred at 103P/Hartley 2, [60] and imaged directly at 67P/Churyumov-Gerasimenko. [59] [57] Astrophysical use of the word "pebble" differs from its geological meaning. [61] In turn, the next-larger geological term, "cobble," has been skipped by Rosetta scientists. [62]
Even larger bodies are "boulders" (decimeter-scale and above) or "chunks." These are rarely seen in the coma, as gas pressure is often insufficient to lift them to significant altitude or escape velocity. [63] [64] [65]
The building blocks of comets are the putative cometesimals, [66] analogous to planetesimal. Whether the actual cometesimals/planetesimals were pebble-scale, [67] boulder-scale, [68] or otherwise has been a key topic in Solar System and exoplanet research. [55] [69] [70] [71]
At best, "dust" is a collective noun for the non-gas portion of the coma and tail(s). At worst, the term is an English usage, understood well by astronomers in the field, but not to the general public, teachers, and scientists from other fields. [72] The larger solids are more properly called "debris" [73] [74] [64] or, for all non-gases, the general "particles" [75] [76] [44] or "grains." [77] [56] [22]
Encke is officially a dust-poor, gas-rich comet. [6] [78] [79] Encke actually emits most of its solid mass as meteoroids or "rocks," [6] not dust. ISO measured no infrared evidence of a classical cometary dust tail due to small particles. [80]
Zodiacal light is a faint glow of diffuse light in the sky scattered by interplanetary dust, particularly a zodiacal cloud, along the ecliptic, and therefore the zodiac. It is mostly only visible in very dark conditions across the night sky along the whole ecliptic as the zodiacal band, backscattered slightly brighter from an oval area of the band directly opposite to the light source as the gegenschein and brightest as a triangle-shaped area at the horizon around the light source as false dawn, mostly just before or after the Sun rises or sets.
A meteor shower is a celestial event in which a number of meteors are observed to radiate, or originate, from one point in the night sky. These meteors are caused by streams of cosmic debris called meteoroids entering Earth's atmosphere at extremely high speeds on parallel trajectories. Most meteors are smaller than a grain of sand, so almost all of them disintegrate and never hit the Earth's surface. Very intense or unusual meteor showers are known as meteor outbursts and meteor storms, which produce at least 1,000 meteors an hour, most notably from the Leonids. The Meteor Data Centre lists over 900 suspected meteor showers of which about 100 are well established. Several organizations point to viewing opportunities on the Internet. NASA maintains a daily map of active meteor showers.
Rosetta was a space probe built by the European Space Agency launched on 2 March 2004. Along with Philae, its lander module, Rosetta performed a detailed study of comet 67P/Churyumov–Gerasimenko (67P). During its journey to the comet, the spacecraft performed flybys of Earth, Mars, and the asteroids 21 Lutetia and 2867 Šteins. It was launched as the third cornerstone mission of the ESA's Horizon 2000 programme, after SOHO / Cluster and XMM-Newton.
67P/Churyumov–Gerasimenko is a Jupiter-family comet. It is originally from the Kuiper belt and has an orbital period of 6.45 years as of 2012, a rotation period of approximately 12.4 hours, and a maximum velocity of 135,000 km/h. Churyumov–Gerasimenko is approximately 4.3 by 4.1 km at its longest and widest dimensions. It was first observed on photographic plates in 1969 by Soviet astronomers Klim Ivanovych Churyumov and Svetlana Ivanovna Gerasimenko, after whom it is named. It most recently came to perihelion on 2 November 2021, and will next come to perihelion on 9 April 2028.
The coma is the nebulous envelope around the nucleus of a comet, formed when the comet passes near the Sun in its highly elliptical orbit. As the comet warms, parts of it sublimate; this gives a comet a diffuse appearance when viewed through telescopes and distinguishes it from stars. The word coma comes from the Greek κόμη (kómē), which means "hair" and is the origin of the word comet itself.
A micrometeorite is a micrometeoroid that has survived entry through the Earth's atmosphere. Usually found on Earth's surface, micrometeorites differ from meteorites in that they are smaller in size, more abundant, and different in composition. The IAU officially defines meteoroids as 30 micrometers to 1 meter; micrometeorites are the small end of the range (~submillimeter). They are a subset of cosmic dust, which also includes the smaller interplanetary dust particles (IDPs).
In astrophysics, accretion is the accumulation of particles into a massive object by gravitationally attracting more matter, typically gaseous matter, into an accretion disk. Most astronomical objects, such as galaxies, stars, and planets, are formed by accretion processes.
Cosmic dust – also called extraterrestrial dust, space dust, or star dust – is dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 μm), such as micrometeoroids. Larger particles are called meteoroids. Cosmic dust can be further distinguished by its astronomical location: intergalactic dust, interstellar dust, interplanetary dust, and circumplanetary dust. There are several methods to obtain space dust measurement.
The interplanetary dust cloud, or zodiacal cloud, consists of cosmic dust that pervades the space between planets within planetary systems, such as the Solar System. This system of particles has been studied for many years in order to understand its nature, origin, and relationship to larger bodies. There are several methods to obtain space dust measurement.
The nucleus is the solid, central part of a comet, formerly termed a dirty snowball or an icy dirtball. A cometary nucleus is composed of rock, dust, and frozen gases. When heated by the Sun, the gases sublime and produce an atmosphere surrounding the nucleus known as the coma. The force exerted on the coma by the Sun's radiation pressure and solar wind cause an enormous tail to form, which points away from the Sun. A typical comet nucleus has an albedo of 0.04. This is blacker than coal, and may be caused by a covering of dust.
Michael R. Combi, is a space science professor at the University of Michigan. Combi's focus is planetary astronomy, and he specializes in the detailed modeling of cometary comae. His model for the distribution of water molecules and associated byproducts has been invaluable in understanding a wide variety of coma observations. He also contributed to discoveries related to the interactions between solar winds and comet tails.
CI chondrites, also called C1 chondrites or Ivuna-type carbonaceous chondrites, are a group of rare carbonaceous chondrite, a type of stony meteorite. They are named after the Ivuna meteorite, the type specimen. CI chondrites have been recovered in France, Canada, India, and Tanzania. Their overall chemical composition closely resembles the elemental composition of the Sun, more so than any other type of meteorite.
Eberhard Grün is a German planetary scientist who specialized in cosmic dust research. He is an active emeritus at the Max Planck Institute for Nuclear Physics (MPIK), Heidelberg (Germany), research associate at the Laboratory for Atmospheric and Space Physics (LASP) in Boulder (Colorado), and was a professor at the University of Heidelberg until his retirement in 2007. Eberhard Grün has had a leading role in international cosmic dust science for over 40 years.
The Micro-Imaging Dust Analysis System (MIDAS) is one of several instruments on the European Space Agency's Rosetta mission which studied in-situ the environment around the active comet 67P/Churyumov–Gerasimenko as it flew into the inner Solar System. MIDAS is an atomic force microscope (AFM) designed to collect dust particles emitted from the comet, and then scan them with a very sharp needle-like tip to determine their 3D structure, size and texture with very high resolution.
Hanna von Hoerner was a German astrophysicist. She founded the company von Hoerner & Sulger which produces scientific instruments, notably cosmic dust analyzers used on space missions by the European Space Agency (ESA) and NASA.
DESTINY+ (Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science) is a planned mission to flyby the Geminids meteor shower parent body 3200 Phaethon, and sample dust originating from the "rock comet". The spacecraft is being developed by the Japanese space agency JAXA, and will demonstrate advanced technologies for future deep space exploration. As of 2023, DESTINY+ is planned to be launched in 2025.
CAESAR is a sample-return mission concept to comet 67P/Churyumov–Gerasimenko. The mission was proposed in 2017 to NASA's New Frontiers program mission 4, and on 20 December 2017 it was one of two finalists selected for further concept development. On 27 June 2019, the other finalist, the Dragonfly mission, was chosen instead.
Centaurus is a mission concept to flyby the centaurs 2060 Chiron and Schwassmann–Wachmann 1. It was submitted in response to the NASA Discovery program call for proposals in 2019 but ultimately was not among the four missions selected for further development by NASA in February 2020. If it had been selected, Centaurus would have been the first mission to attempt a flyby of a centaur.
Space dust measurement refers to the study of small particles of extraterrestrial material, known as micrometeoroids or interplanetary dust particles (IDPs), that are present in the Solar System. These particles are typically of micrometer to sub-millimeter size and are composed of a variety of materials including silicates, metals, and carbon compounds. The study of space dust is important as it provides insight into the composition and evolution of the Solar System, as well as the potential hazards posed by these particles to spacecraft and other space-borne assets. The measurement of space dust requires the use of advanced scientific techniques such as secondary ion mass spectrometry (SIMS), optical and atomic force microscopy (AFM), and laser-induced breakdown spectroscopy (LIBS) to accurately characterize the physical and chemical properties of these particles.
Dust astronomy is a subfield of astronomy that uses the information contained in individual cosmic dust particles ranging from their dynamical state to its isotopic, elemental, molecular, and mineralogical composition in order to obtain information on the astronomical objects occurring in outer space. Dust astronomy overlaps with the fields of Planetary science, Cosmochemistry, and Astrobiology.