Contrast transfer function

Last updated
Power spectrum (Fourier transform) of a typical electron micrograph. The effect of the contrast transfer function can be seen in the alternating light and dark rings (Thon rings), which show the relation between contrast and spatial frequency. Contrast transfer function.jpg
Power spectrum (Fourier transform) of a typical electron micrograph. The effect of the contrast transfer function can be seen in the alternating light and dark rings (Thon rings), which show the relation between contrast and spatial frequency.

The contrast transfer function (CTF) mathematically describes how aberrations in a transmission electron microscope (TEM) modify the image of a sample. [1] [2] [3] [4] This contrast transfer function (CTF) sets the resolution of high-resolution transmission electron microscopy (HRTEM), also known as phase contrast TEM.

Contents

By considering the recorded image as a CTF-degraded true object, describing the CTF allows the true object to be reverse-engineered. This is typically denoted CTF-correction, and is vital to obtain high resolution structures in three-dimensional electron microscopy, especially electron cryo-microscopy. Its equivalent in light-based optics is the optical transfer function.

Phase contrast in HRTEM

.

The contrast in HRTEM comes from interference in the image plane between the phases of scattered electron waves with the phase of the transmitted electron wave. Complex interactions occur when an electron wave passes through a sample in the TEM. Above the sample, the electron wave can be approximated as a plane wave. As the electron wave, or wavefunction, passes through the sample, both the phase and the amplitude of the electron beam is altered. The resultant scattered and transmitted electron beam is then focused by an objective lens, and imaged by a detector in the image plane.

Detectors are only able to measure the amplitude, not the phase directly. However, with the correct microscope parameters, the phase interference can be indirectly measured via the intensity in the image plane. Electrons interact very strongly with crystalline solids. As a result, the phase changes due to very small features, down to the atomic scale, can be recorded via HRTEM.

Contrast transfer theory

TEM Ray Diagram with Phase Contrast Transfer Function TEM Ray Diagram with Phase Contrast Transfer Function.pdf
TEM Ray Diagram with Phase Contrast Transfer Function

Contrast transfer theory provides a quantitative method to translate the exit wavefunction to a final image. Part of the analysis is based on Fourier transforms of the electron beam wavefunction. When an electron wavefunction passes through a lens, the wavefunction goes through a Fourier transform. This is a concept from Fourier optics.

Contrast transfer theory consists of four main operations: [1]

  1. Take the Fourier transform of the exit wave to obtain the wave amplitude in back focal plane of objective lens
  2. Modify the wavefunction in reciprocal space by a phase factor, also known as the Phase Contrast Transfer Function, to account for aberrations
  3. Inverse Fourier transform the modified wavefunction to obtain the wavefunction in the image plane
  4. Find the square modulus of the wavefunction in the image plane to find the image intensity (this is the signal that is recorded on a detector, and creates an image)

Mathematical form

If we incorporate some assumptions about our sample, then an analytical expression can be found for both phase contrast and the phase contrast transfer function. As discussed earlier, when the electron wave passes through a sample, the electron beam interacts with the sample via scattering, and experiences a phase shift. This is represented by the electron wavefunction exiting from the bottom of the sample. This expression assumes that the scattering causes a phase shift (and no amplitude shift). This is called the Phase Object Approximation.

The exit wavefunction

Following Wade's notation, [1] the exit wavefunction expression is represented by:

Where the exit wavefunction τ is a function of both in the plane of the sample, and perpendicular to the plane of the sample. represents the wavefunction incident on the top of the sample. is the wavelength of the electron beam, [5] which is set by the accelerating voltage. is the effective potential of the sample, which depends on the atomic potentials within the crystal, represented by .

Within the exit wavefunction, the phase shift is represented by:

This expression can be further simplified taken into account some more assumptions about the sample. If the sample is considered very thin, and a weak scatterer, so that the phase shift is << 1, then the wave function can be approximated by a linear Taylor polynomial expansion. [6] This approximation is called the Weak Phase Object Approximation.

The exit wavefunction can then be expressed as:

The phase contrast transfer function

Passing through the objective lens incurs a Fourier transform and phase shift. As such, the wavefunction on the back focal plane of the objective lens can be represented by:

= the scattering angle between the transmitted electron wave and the scattered electron wave

= a delta function representing the non-scattered, transmitted, electron wave

= the Fourier transform of the wavefunction's phase

= the phase shift incurred by the microscope's aberrations, also known as the Contrast Transfer Function:


= the relativistic wavelength of the electron wave, = The spherical aberration of the objective lens


The contrast transfer function can also be given in terms of spatial frequencies, or reciprocal space. With the relationship , the phase contrast transfer function becomes:


= the defocus of the objective lens (using the convention that underfocus is positive and overfocus is negative), = the relativistic wavelength of the electron wave, = The spherical aberration of the objective lens, = the spatial frequency (units of m−1)

Spherical aberration

Spherical aberration is a blurring effect arising when a lens is not able to converge incoming rays at higher angles of incidence to the focus point, but rather focuses them to a point closer to the lens. This will have the effect of spreading an imaged point (which is ideally imaged as a single point in the gaussian image plane) out over a finite size disc in the image plane. Giving the measure of aberration in a plane normal to the optical axis is called a transversal aberration. The size (radius) of the aberration disc in this plane can be shown to be proportional to the cube of the incident angle (θ) under the small-angle approximation, and that the explicit form in this case is

where is the spherical aberration and is the magnification, both effectively being constants of the lens settings. One can then go on to note that the difference in refracted angle between an ideal ray and one which suffers from spherical aberration, is

where is the distance from the lens to the gaussian image plane and is the radial distance from the optical axis to the point on the lens which the ray passed through. Simplifying this further (without applying any approximations) shows that

Two approximations can now be applied to proceed further in a straightforward manner. They rely on the assumption that both and are much smaller than , which is equivalent to stating that we are considering relatively small angles of incidence and consequently also very small spherical aberrations. Under such an assumption, the two leading terms in the denominator are insignificant, and can be approximated as not contributing. By way of these assumptions we have also implicitly stated that the fraction itself can be considered small, and this results in the elimination of the function by way of the small-angle approximation;

If the image is considered to be approximately in focus, and the angle of incidence is again considered small, then

meaning that an approximate expression for the difference in refracted angle between an ideal ray and one which suffers from spherical aberration, is given by

Defocus

As opposed to the spherical aberration, we will proceed by estimating the deviation of a defocused ray from the ideal by stating the longitudinal aberration; a measure of how much a ray deviates from the focal point along the optical axis. Denoting this distance , it is possible to show that the difference in refracted angle between rays originating from a focused and defocused object, can be related to the refracted angle as

where and are defined in the same way as they were for spherical aberration. Assuming that (or equivalently that ), we can show that

Since we required to be small, and since being small implies , we are given an approximation of as

From the thin-lens formula it can be shown that , yielding a final estimation of the difference in refracted angle between in-focus and off-focus rays as

Examples

The contrast transfer function determines how much phase signal gets transmitted to the real space wavefunction in the image plane. As the modulus squared of the real space wavefunction gives the image signal, the contrast transfer function limits how much information can ultimately be translated into an image. The form of the contrast transfer function determines the quality of real space image formation in the TEM.

CTF Function prepared via web applet created by Jiang and Chiu, available at https://ctfsimulation.streamlit.app/ Unmodified CTF.pdf
CTF Function prepared via web applet created by Jiang and Chiu, available at https://ctfsimulation.streamlit.app/

This is an example contrast transfer function. There are a number of things to note:

Scherzer defocus

The defocus value () can be used to counteract the spherical aberration to allow for greater phase contrast. This analysis was developed by Scherzer, and is called the Scherzer defocus. [7]

The variables are the same as from the mathematical treatment section, with setting the specific Scherzer defocus, as the spherical aberration, and λ as the relativistic wavelength for the electron wave.

The figure in the following section shows the CTF function for a CM300 Microscope at the Scherzer Defocus. Compared to the CTF Function showed above, there is a larger window, also known as a passband, of spatial frequencies with high transmittance. This allows more phase signal to pass through to the image plane.

Envelope function

CTF Function of a CM300 Microscope damped by temporal and spatial envelope functions. CTF Modified by Spatial and Temporal Envelope Functions.pdf
CTF Function of a CM300 Microscope damped by temporal and spatial envelope functions.

The envelope function represents the effect of additional aberrations that damp the contrast transfer function, and in turn the phase. The envelope terms comprising the envelope function tend to suppress high spatial frequencies. The exact form of the envelope functions can differ from source to source. Generally, they are applied by multiplying the Contrast Transfer Function by an envelope term Et representing temporal aberrations, and an envelope term Es representing spatial aberrations. This yields a modified, or effective Contrast Transfer Function:

Examples of temporal aberrations include chromatic aberrations, energy spread, focal spread, instabilities in the high voltage source, and instabilities in the objective lens current. An example of a spatial aberration includes the finite incident beam convergence. [8]


As shown in the figure, the most restrictive envelope term will dominate in damping the contrast transfer function. In this particular example, the temporal envelope term is the most restrictive. Because the envelope terms damp more strongly at higher spatial frequencies, there comes a point where no more phase signal can pass through. This is called the Information Limit of the microscope, and is one measure of the resolution.


Modeling the envelope function can give insight into both TEM instrument design, and imaging parameters. By modeling the different aberrations via envelope terms, it is possible to see which aberrations are most limiting the phase signal.

Various software have been developed to model both the Contrast Transfer Function and Envelope Function for particular microscopes, and particular imaging parameters. [9] [10]

Linear imaging theory vs. non-linear imaging theory


The previous description of the contrast transfer function depends on linear imaging theory. Linear imaging theory assumes that the transmitted beam is dominant, there is only weak phase shift by the sample. In many cases, this precondition is not fulfilled. In order to account for these effects, non-linear imaging theory is required. With strongly scattering samples, diffracted electrons will not only interfere with the transmitted beam, but will also interfere with each other. This will produce second order diffraction intensities. Non-linear imaging theory is required to model these additional interference effects. [11] [12]

Contrary to a widespread assumption, the linear/nonlinear imaging theory has nothing to do with kinematical diffraction or dynamical diffraction, respectively.

Linear imaging theory is still used, however, because it has some computational advantages. In Linear imaging theory, the Fourier coefficients for the image plane wavefunction are separable. This greatly reduces computational complexity, allowing for faster computer simulations of HRTEM images. [13]


See also

Related Research Articles

<span class="mw-page-title-main">Diffraction</span> Phenomenon of the motion of waves

Diffraction is the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word diffraction and was the first to record accurate observations of the phenomenon in 1660.

<span class="mw-page-title-main">Refractive index</span> Ratio of the speed of light in vacuum to that in the medium

In optics, the refractive index of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium.

Ray transfer matrix analysis is a mathematical form for performing ray tracing calculations in sufficiently simple problems which can be solved considering only paraxial rays. Each optical element is described by a 2×2 ray transfer matrix which operates on a vector describing an incoming light ray to calculate the outgoing ray. Multiplication of the successive matrices thus yields a concise ray transfer matrix describing the entire optical system. The same mathematics is also used in accelerator physics to track particles through the magnet installations of a particle accelerator, see electron optics.

<span class="mw-page-title-main">Angular resolution</span> Ability of any image-forming device to distinguish small details of an object

Angular resolution describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution. It is used in optics applied to light waves, in antenna theory applied to radio waves, and in acoustics applied to sound waves. The colloquial use of the term "resolution" sometimes causes confusion; when an optical system is said to have a high resolution or high angular resolution, it means that the perceived distance, or actual angular distance, between resolved neighboring objects is small. The value that quantifies this property, θ, which is given by the Rayleigh criterion, is low for a system with a high resolution. The closely related term spatial resolution refers to the precision of a measurement with respect to space, which is directly connected to angular resolution in imaging instruments. The Rayleigh criterion shows that the minimum angular spread that can be resolved by an image forming system is limited by diffraction to the ratio of the wavelength of the waves to the aperture width. For this reason, high resolution imaging systems such as astronomical telescopes, long distance telephoto camera lenses and radio telescopes have large apertures.

Fourier optics is the study of classical optics using Fourier transforms (FTs), in which the waveform being considered is regarded as made up of a combination, or superposition, of plane waves. It has some parallels to the Huygens–Fresnel principle, in which the wavefront is regarded as being made up of a combination of spherical wavefronts whose sum is the wavefront being studied. A key difference is that Fourier optics considers the plane waves to be natural modes of the propagation medium, as opposed to Huygens–Fresnel, where the spherical waves originate in the physical medium.

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Airy disk</span> Diffraction pattern in optics

In optics, the Airy disk and Airy pattern are descriptions of the best-focused spot of light that a perfect lens with a circular aperture can make, limited by the diffraction of light. The Airy disk is of importance in physics, optics, and astronomy.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance from the object, and also when it is viewed at the focal plane of an imaging lens. In contrast, the diffraction pattern created near the diffracting object and is given by the Fresnel diffraction equation.

<span class="mw-page-title-main">Envelope (mathematics)</span> Curve external to a family of curves in geometry

In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.

In quantum physics, the scattering amplitude is the probability amplitude of the outgoing spherical wave relative to the incoming plane wave in a stationary-state scattering process. At large distances from the centrally symmetric scattering center, the plane wave is described by the wavefunction

Optical resolution describes the ability of an imaging system to resolve detail, in the object that is being imaged. An imaging system may have many individual components, including one or more lenses, and/or recording and display components. Each of these contributes to the optical resolution of the system; the environment in which the imaging is done often is a further important factor.

<span class="mw-page-title-main">Optical transfer function</span> Function that specifies how different spatial frequencies are captured by an optical system

The optical transfer function (OTF) of an optical system such as a camera, microscope, human eye, or projector specifies how different spatial frequencies are captured or transmitted. It is used by optical engineers to describe how the optics project light from the object or scene onto a photographic film, detector array, retina, screen, or simply the next item in the optical transmission chain. A variant, the modulation transfer function (MTF), neglects phase effects, but is equivalent to the OTF in many situations.

In Hamiltonian mechanics, the linear canonical transformation (LCT) is a family of integral transforms that generalizes many classical transforms. It has 4 parameters and 1 constraint, so it is a 3-dimensional family, and can be visualized as the action of the special linear group SL2(R) on the time–frequency plane (domain). As this defines the original function up to a sign, this translates into an action of its double cover on the original function space.

<span class="mw-page-title-main">High-resolution transmission electron microscopy</span>

High-resolution transmission electron microscopy is an imaging mode of specialized transmission electron microscopes that allows for direct imaging of the atomic structure of samples. It is a powerful tool to study properties of materials on the atomic scale, such as semiconductors, metals, nanoparticles and sp2-bonded carbon. While this term is often also used to refer to high resolution scanning transmission electron microscopy, mostly in high angle annular dark field mode, this article describes mainly the imaging of an object by recording the two-dimensional spatial wave amplitude distribution in the image plane, similar to a "classic" light microscope. For disambiguation, the technique is also often referred to as phase contrast transmission electron microscopy, although this term is less appropriate. At present, the highest point resolution realised in high resolution transmission electron microscopy is around 0.5 ångströms (0.050 nm). At these small scales, individual atoms of a crystal and defects can be resolved. For 3-dimensional crystals, it is necessary to combine several views, taken from different angles, into a 3D map. This technique is called electron tomography.

The Kapitza–Dirac effect is a quantum mechanical effect consisting of the diffraction of matter by a standing wave of light. The effect was first predicted as the diffraction of electrons from a standing wave of light by Paul Dirac and Pyotr Kapitsa in 1933. The effect relies on the wave–particle duality of matter as stated by the de Broglie hypothesis in 1924.

<span class="mw-page-title-main">Wrapped exponential distribution</span> Probability distribution

In probability theory and directional statistics, a wrapped exponential distribution is a wrapped probability distribution that results from the "wrapping" of the exponential distribution around the unit circle.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

In physics and engineering, the radiative heat transfer from one surface to another is the equal to the difference of incoming and outgoing radiation from the first surface. In general, the heat transfer between surfaces is governed by temperature, surface emissivity properties and the geometry of the surfaces. The relation for heat transfer can be written as an integral equation with boundary conditions based upon surface conditions. Kernel functions can be useful in approximating and solving this integral equation.

References

  1. 1 2 3 Wade, R. H. (October 1992). "A brief look at imaging and contrast transfer". Ultramicroscopy. 46 (1–4): 145–156. doi:10.1016/0304-3991(92)90011-8.
  2. Spence, John C. H. (1988 2nd ed) Experimental high-resolution electron microscopy (Oxford U. Press, NY) ISBN   0195054059.
  3. Ludwig Reimer (1997 4th ed) Transmission electron microscopy: Physics of image formation and microanalysis (Springer, Berlin) preview.
  4. Earl J. Kirkland (1998) Advanced computing in electron microscopy (Plenum Press, NY).
  5. "DeBroglie Wavelength". HyperPhysics. Georgia State University. Retrieved 27 April 2017.
  6. "Weak-phase-objects (WPO) in TEM observations - Practical Electron Microscopy and Database - An Online Book - EELS EDS TEM SEM". www.globalsino.com. Retrieved 2015-06-12.
  7. Scherzer (1949). "The theoretical resolution limit of the electron microscope". Journal of Applied Physics. 20 (1): 20–29. Bibcode:1949JAP....20...20S. doi:10.1063/1.1698233.
  8. "Envelope Functions". www.maxsidorov.com. Retrieved 2015-06-12.
  9. "CTF Simulation". Wen Jiang Group. Retrieved 27 April 2017.
  10. Sidorov, Max. "Home of the ctfExplorer" . Retrieved 27 April 2017.
  11. Bonevich, Marks (May 24, 1988). "Contrast Transfer Theory for Non-Linear Imaging". Ultramicroscopy. 26 (3): 313–319. doi:10.1016/0304-3991(88)90230-6.
  12. This page was prepared in part for Northwestern University class MSE 465, taught by Professor Laurie Marks.
  13. Notes prepared by Professor Laurie Marks at Northwestern University.