DAA-1106

Last updated
DAA-1106
DAA-1106 structure.png
Identifiers
  • N-(2-Phenoxy-5-fluorophenyl)-N-(2,5-dimethoxybenzyl)acetamide
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C23H22FNO4
Molar mass 394.4242 g·mol−1
3D model (JSmol)
  • COC1=CC(CN(C(C)=O)C2=CC(F)=CC=C2OC3=CC=CC=C3)=C(O[11CH3])C=C1
  • InChI=1S/C23H22FNO4/c1-16(26)25(15-17-13-20(27-2)10-12-22(17)28-3)21-14-18(24)9-11-23(21)29-19-7-5-4-6-8-19/h4-14H,15H2,1-3H3https://drugs.ncats.io/drug/696AIN172A#
  • Key:DCRZYADKQRHHSF-UHFFFAOYSA-N
   (verify)

DAA-1106 is a drug which acts as a potent and selective agonist at the peripheral benzodiazepine receptor, also known as the mitochondrial 18 kDa translocator protein or TSPO, but with no affinity at the GABAA receptor. It has anxiolytic effects in animal studies. [1] [2] [3] DAA-1106 has a sub-nanomolar binding affinity (Ki) of 0.28 nM, and has been used extensively in its 3H or 11C radiolabelled form to map TSPO in the body and brain, which has proved especially helpful in monitoring the progress of neurodegenerative diseases such as Alzheimer's disease. [4] [5] [6] [7] [8] [9]

DAA-1106 is used in combination with positron emission tomography (PET) scanning to examine neuroinflammation in vivo . [10]

Related Research Articles

GABA<sub>A</sub> receptor Ionotropic receptor and ligand-gated ion channel

The GABAA receptor (GABAAR) is an ionotropic receptor and ligand-gated ion channel. Its endogenous ligand is γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. Accurate regulation of GABAergic transmission through appropriate developmental processes, specificity to neural cell types, and responsiveness to activity is crucial for the proper functioning of nearly all aspects of the central nervous system (CNS). Upon opening, the GABAA receptor on the postsynaptic cell is selectively permeable to chloride ions (Cl) and, to a lesser extent, bicarbonate ions (HCO3).

<span class="mw-page-title-main">Alpidem</span> Anxiolytic medication

Alpidem, sold under the brand name Ananxyl, is a nonbenzodiazepine anxiolytic medication which was briefly used to treat anxiety disorders but is no longer marketed. It was previously marketed in France, but was discontinued due to liver toxicity. Alpidem is taken by mouth.

Melanocortin receptors are members of the rhodopsin family of 7-transmembrane G protein-coupled receptors.

<span class="mw-page-title-main">PK-11195</span> Chemical compound

PK-11195 is an isoquinoline carboxamide which binds selectively to the peripheral benzodiazepine receptor (PBR). It is one of the most commonly used PBR ligands due to its high affinity for the PBR in all species, although it is starting to be replaced by newer and more selective ligands.

<span class="mw-page-title-main">Sigma-1 receptor</span> Chaperone protein

The sigma-1 receptor (σ1R), one of two sigma receptor subtypes, is a chaperone protein at the endoplasmic reticulum (ER) that modulates calcium signaling through the IP3 receptor. In humans, the σ1 receptor is encoded by the SIGMAR1 gene.

<span class="mw-page-title-main">Translocator protein</span> Human protein

Translocator protein (TSPO) is an 18 kDa protein mainly found on the outer mitochondrial membrane. It was first described as peripheral benzodiazepine receptor (PBR), a secondary binding site for diazepam, but subsequent research has found the receptor to be expressed throughout the body and brain. In humans, the translocator protein is encoded by the TSPO gene. It belongs to a family of tryptophan-rich sensory proteins. Regarding intramitochondrial cholesterol transport, TSPO has been proposed to interact with StAR to transport cholesterol into mitochondria, though evidence is mixed.

<span class="mw-page-title-main">Etifoxine</span> Anxiolytic medication

Etifoxine, sold under the trade name Stresam among others, is a nonbenzodiazepine anxiolytic agent, primarily indicated for short-term management of adjustment disorder, specifically instances of situational depression accompanied by anxiety, such as stress-induced anxiety. Administration is by mouth. Side effects associated with etifoxine use include slight drowsiness, headache, skin eruptions, and allergic reactions. In rare cases, etifoxine has been linked to severe skin and liver toxicity, as well as menstrual bleeding between periods. Unlike benzodiazepines, etifoxine does not cause sedation or lack of coordination. Etifoxine acts as a GABAA receptor positive allosteric modulator and as a ligand for translocator proteins. Both mechanisms are conjectured to contribute to its anxiolytic properties.

<span class="mw-page-title-main">L-655,708</span> Chemical compound

L-655,708 (FG-8094) is a nootropic drug invented in 1996 by a team working for Merck, Sharp and Dohme, that was the first compound developed which acts as a subtype-selective inverse agonist at the α5 subtype of the benzodiazepine binding site on the GABAA receptor. It acts as an inverse agonist at the α1, α2, α3 and α5 subtypes, but with much higher affinity for α5, and unlike newer α5 inverse agonists such as α5IA, L-655,708 exerts its subtype selectivity purely via higher binding affinity for this receptor subtype, with its efficacy as an inverse agonist being around the same at all the subtypes it binds to.

<span class="mw-page-title-main">Emapunil</span> Chemical compound

Emapunil is an anxiolytic drug which acts as a selective agonist at the peripheral benzodiazepine receptor, also known as the mitochondrial 18 kDa translocator protein or TSPO. This protein has multiple functions, among which is regulation of steroidogenesis, particularly the production of neuroactive steroids such as allopregnanolone in the brain. In both animal and human trials, emapunil produced fast acting anxiolytic and anti-panic effects, without producing sedation or withdrawal symptoms following cessation of use. Emapunil is also used in its 11C radiolabelled form to map the distribution of TSPO receptors in the brain.

<span class="mw-page-title-main">FGIN-127</span> Chemical compound

FGIN-1-27 is an anxiolytic drug which acts as a selective agonist at the peripheral benzodiazepine receptor, also known as the mitochondrial 18 kDa translocator protein or TSPO. It is thought to produce anxiolytic effects by stimulating steroidogenesis of neuroactive steroids such as allopregnanolone.

<span class="mw-page-title-main">FGIN-143</span> Chemical compound

FGIN-1-43 is an anxiolytic drug which acts as a selective agonist at the peripheral benzodiazepine receptor, also known as the mitochondrial 18 kDa translocator protein or TSPO. It is thought to produce anxiolytic effects by stimulating steroidogenesis of neuroactive steroids such as allopregnanolone, and is several times more potent than the related drug FGIN-127.

<span class="mw-page-title-main">SSR-180,575</span> Chemical compound

SSR-180,575 is a drug which acts as a selective agonist at the peripheral benzodiazepine receptor, also known as the mitochondrial 18 kDa translocator protein or TSPO. It has been shown to have neuroprotective and cardioprotective effects and to stimulate steroidogenesis of pregnenolone in the brain, which may be linked to its neuroprotective action.

<span class="mw-page-title-main">DAA-1097</span> Chemical compound

DAA-1097 is a drug which acts as a potent and selective agonist at the peripheral benzodiazepine receptor, also known as the mitochondrial 18 kDa translocator protein or TSPO, but with no affinity at central benzodiazepine receptors. It has anxiolytic effects in animal studies.

<span class="mw-page-title-main">Ro5-4864</span> Chemical compound

Ro5-4864 (4'-chlorodiazepam) is a drug which is a benzodiazepine derivative of diazepam. However unlike most benzodiazepine derivatives, Ro5-4864 lacks affinity for GABAA receptors and lacks typical benzodiazepine effects, instead being sedative yet also convulsant and anxiogenic in effects. Ro5-4864 was found to be a potent ligand for the "peripheral benzodiazepine receptor", later renamed to mitochondrial translocator protein 18kDa (TSPO). Despite its convulsant effects, at lower doses Ro5-4864 has proved to be neuroprotective and has become widely used for research into the role of the TSPO protein in neurotoxicity. In vitro studies and rodent models also suggest the possibility of analgesic, antidepressant, cardioprotective, and anti-cancer effects.

<span class="mw-page-title-main">MGS-0039</span> Chemical compound

MGS-0039 is a drug that is used in neuroscientific research, which acts as a potent and selective antagonist for group II of the metabotropic glutamate receptors (mGluR2/3). It produces antidepressant and anxiolytic effects in animal studies, and has been shown to boost release of dopamine and serotonin in specific brain areas. Research has suggested this may occur through a similar mechanism as that suggested for the similarly glutamatergic drug ketamine.

<span class="mw-page-title-main">DPA-714</span> Chemical compound

DPA-714 or N,N-diethyl-2-[4-(2-fluoroethoxy)phenyl]-5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-acetamide is a selective ligand for the translocator protein (TSPO) currently under evaluation for several clinical applications. For this reason, a practical, multigram synthetic route for its preparation has been described.

<span class="mw-page-title-main">DPA-713</span> Chemical compound

DPA-713 or N,N-diethyl-2-(4-methoxyphenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-acetamide is a selective ligand for the translocator protein (TSPO).

<span class="mw-page-title-main">NE-100</span> Chemical compound

NE-100 or 4-methoxy-3-(2-phenylethoxy)-N,N-dipropylbenzeneethanamine is a selective sigma-1 receptor antagonist, with a reported binding affinity of Ki = 1.03 ± 0.01 nM, and more than 205 times selectivity over the sigma-2 receptor.

<span class="mw-page-title-main">GML-1</span> Chemical compound

GML-1 is a TSPO ligand with anxiolytic activity. Its binding affinity to TSPO is comparable with PK11195. GML-1 is selective for TSPO versus the central benzodiazepine receptor. The compound GML-1 was the most active of a series of 1-arylpyrrolo[1,2-a]pyrazine-3-carboxamides, and its anxiolytic effects were examined using the open field test (OFT) and the elevated plus maze (EPM) test. The EPM test is a general anxiety test measuring the time spent by animals in the open or the enclosed arms. When compound was administered to CD-1 mice at the dose of 1.0 mg/kg, it significantly increased the percentage of open arm entries and the time spent in the open arms. GML-1 is a potential antianxiety agent.

<span class="mw-page-title-main">Julie C. Price</span> American physicist and professor of radiology

Julie C. Price is an American medical physicist and professor of radiology at Massachusetts General Hospital (MGH), Harvard Medical School (HMS), as well as the director of PET Pharmacokinetic Modeling at the Athinoula A. Martinos Center at MGH. Price is a leader in the study and application of quantitative positron emission tomography (PET) methods. Prior to this, Price worked with Pittsburgh colleagues to lead the first fully quantitative pharmacokinetic evaluations of 11C-labeled Pittsburgh compound-B (PIB), one of the most widely used PET ligands for imaging amyloid beta plaques. As a principal investigator at MGH, Price continues work to validate novel PET methods for imaging biological markers of health and disease in studies of aging and neurodegeneration, including studies of glucose metabolism, protein expression, neurotransmitter system function, and tau and amyloid beta plaque burden.

References

  1. Okuyama S, Chaki S, Yoshikawa R, Ogawa S, Suzuki Y, Okubo T, Nakazato A, Nagamine M, Tomisawa K (1999). "Neuropharmacological profile of peripheral benzodiazepine receptor agonists, DAA1097 and DAA1106". Life Sciences. 64 (16): 1455–64. doi:10.1016/S0024-3205(99)00079-X. PMID   10321725.
  2. Okubo T, Yoshikawa R, Chaki S, Okuyama S, Nakazato A (January 2004). "Design, synthesis and structure-affinity relationships of aryloxyanilide derivatives as novel peripheral benzodiazepine receptor ligands". Bioorganic & Medicinal Chemistry. 12 (2): 423–38. doi:10.1016/j.bmc.2003.10.050. PMID   14723961.
  3. James ML, Selleri S, Kassiou M (2006). "Development of ligands for the peripheral benzodiazepine receptor" (PDF). Current Medicinal Chemistry. 13 (17): 1991–2001. doi:10.2174/092986706777584979. hdl: 2158/222808 . PMID   16842193.
  4. Venneti S, Lopresti BJ, Wang G, Slagel SL, Mason NS, Mathis CA, Fischer ML, Larsen NJ, Mortimer AD, Hastings TG, Smith AD, Zigmond MJ, Suhara T, Higuchi M, Wiley CA (September 2007). "A comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: implications for PET imaging of microglial activation". Journal of Neurochemistry. 102 (6): 2118–31. doi:10.1111/j.1471-4159.2007.04690.x. PMID   17555551. S2CID   3788208.
  5. Venneti S, Wang G, Nguyen J, Wiley CA (October 2008). "The positron emission tomography ligand DAA1106 binds with high affinity to activated microglia in human neurological disorders". Journal of Neuropathology and Experimental Neurology. 67 (10): 1001–10. doi:10.1097/NEN.0b013e318188b204. PMC   2669281 . PMID   18800007.
  6. Ji B, Maeda J, Sawada M, Ono M, Okauchi T, Inaji M, Zhang MR, Suzuki K, Ando K, Staufenbiel M, Trojanowski JQ, Lee VM, Higuchi M, Suhara T (November 2008). "Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies". Journal of Neuroscience. 28 (47): 12255–67. doi:10.1523/JNEUROSCI.2312-08.2008. PMC   2755188 . PMID   19020019.
  7. Doorduin J, de Vries EF, Dierckx RA, Klein HC (2008). "PET imaging of the peripheral benzodiazepine receptor: monitoring disease progression and therapy response in neurodegenerative disorders". Current Pharmaceutical Design. 14 (31): 3297–315. doi:10.2174/138161208786549443. PMID   19075709.
  8. Gulyás B, Makkai B, Kása P, Gulya K, Bakota L, Várszegi S, Beliczai Z, Andersson J, Csiba L, Thiele A, Dyrks T, Suhara T, Suzuki K, Higuchi M, Halldin C (January 2009). "A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system". Neurochemistry International. 54 (1): 28–36. doi:10.1016/j.neuint.2008.10.001. PMID   18984021. S2CID   21033494.
  9. Wang M, Gao M, Hutchins GD, Zheng QH (June 2009). "Synthesis of [11C]FEDAA1106 as a new PET imaging probe of peripheral benzodiazepine receptor expression". European Journal of Medicinal Chemistry. 44 (6): 2748–53. doi:10.1016/j.ejmech.2008.08.001. PMID   18790550.
  10. "NCATS Inxight: Drugs — DAA-1106 C-11". drugs.ncats.io. Retrieved 2020-11-17.