Energy in Botswana

Last updated

Energy in Botswana is a growing industry with tremendous potential. However almost all Botswana's electricity is generated from coal. [1] No petroleum reserves have been identified and all petroleum products are imported refined, mostly from South Africa. There is extensive woody biomass from 3 to 10t / hectare.

Contents

Recently, the country has taken a large interest in renewable energy sources and has completed a comprehensive strategy that may attract investors in the wind, solar and biomass renewable energy industries.[ citation needed ] Botswana's power stations include Morupule Power Stations B(600 MW), and A (132 MW), [2] Orapa Power Station (90 MW) and Phakalane Power Station (1.3 MW).

The International Renewable Energy Agency (IRENA) undertook an evaluation of the national energy sector in 2021 and found that Botswana could meet 15% of its energy needs in 2030 from its indigenous solar, wind, and bioenergy resources. [3] [4]

Renewable Energy

Solar insolation is one of the highest levels in the world, but until recently there were no reports of significant use of solar energy. As of September 2012, the first solar power generation plant in the country has been opened.

The Botswana Renewable Energy Conference was held 11–12 August 2014. [5] The Sustainable Development Goals were cited for development of renewable energy through "green and environmentally sound technologies" at the 5th plenary meeting, 70th Session of the United Nations General Assembly: the Sustainable Development Summit 2015. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Renewable energy</span> Energy that is collected from renewable resources

Renewable energy is energy from renewable resources that are naturally replenished on a human timescale. Renewable resources include sunlight, wind, the movement of water, and geothermal heat. Although most renewable energy sources are sustainable, some are not. For example, some biomass sources are considered unsustainable at current rates of exploitation. Renewable energy is often used for electricity generation, heating and cooling. Renewable energy projects are typically large-scale, but they are also suited to rural and remote areas and developing countries, where energy is often crucial in human development. Renewable energy is often deployed together with further electrification, which has several benefits: electricity can move heat or objects efficiently, and is clean at the point of consumption.

<span class="mw-page-title-main">Renewable energy in the European Union</span>

Renewable energy plays an important and growing role in the energy system of the European Union. The Europe 2020 strategy included a target of reaching 20% of gross final energy consumption from renewable sources by 2020, and at least 32% by 2030. The EU27 reached 22.1% in 2020, up from 9.6% in 2004, but declined to 21.8% in 2021. These figures are based on energy use in all its forms across all three main sectors, the heating and cooling sector, the electricity sector, and the transport sector.

The energy policy of India is to increase the locally produced energy in India and reduce energy poverty, with more focus on developing alternative sources of energy, particularly nuclear, solar and wind energy. Net energy import dependency was 40.9% in 2021-22.

<span class="mw-page-title-main">Renewable energy commercialization</span> Deployment of technologies harnessing easily replenished natural resources

Renewable energy commercialization involves the deployment of three generations of renewable energy technologies dating back more than 100 years. First-generation technologies, which are already mature and economically competitive, include biomass, hydroelectricity, geothermal power and heat. Second-generation technologies are market-ready and are being deployed at the present time; they include solar heating, photovoltaics, wind power, solar thermal power stations, and modern forms of bioenergy. Third-generation technologies require continued R&D efforts in order to make large contributions on a global scale and include advanced biomass gasification, hot-dry-rock geothermal power, and ocean energy. As of 2012, renewable energy accounts for about half of new nameplate electrical capacity installed and costs are continuing to fall.

<span class="mw-page-title-main">Renewable energy in Brazil</span>

As of 2018, renewable energy accounted for 79% of the domestically produced electricity used in Brazil.

<span class="mw-page-title-main">Energy in Brazil</span> Overview of the production, consumption, import and export of energy and electricity in Brazil

Brazil is the 10th largest energy consumer in the world and the largest in South America. At the same time, it is an important oil and gas producer in the region and the world's second largest ethanol fuel producer. The government agencies responsible for energy policy are the Ministry of Mines and Energy (MME), the National Council for Energy Policy (CNPE), the National Agency of Petroleum, Natural Gas and Biofuels (ANP) and the National Agency of Electricity (ANEEL). State-owned companies Petrobras and Eletrobras are the major players in Brazil's energy sector, as well as Latin America's.

For solar power, South Asia has the ideal combination of both high solar insolation and a high density of potential customers.

<span class="mw-page-title-main">Renewable energy in China</span>

China is the world's leader in electricity production from renewable energy sources, with over triple the generation of the second-ranking country, the United States. China's renewable energy sector is growing faster than its fossil fuels and nuclear power capacity, and is expected to contribute 43 per cent of global renewable capacity growth. China's total renewable energy capacity exceeded 1,000 GW in 2021, accounting for 43.5 per cent of the country's total power generation capacity, 10.2 percentage points higher than in 2015. The country aims to have 80 per cent of its total energy mix come from non-fossil fuel sources by 2060, and achieve a combined 1,200 GW of solar and wind capacity by 2030. In 2023, it was reported that China was on track to reach 1,371 gigawatts of wind and solar by 2025, five years ahead of target due to new renewables installations smashing records.

<span class="mw-page-title-main">Energy in Mexico</span> Overview of the production, consumption, import and export of energy and electricity in Mexico

Energy in Mexico describes energy and electricity production, consumption and import in Mexico.

<span class="mw-page-title-main">Renewable energy in India</span>

India is world's 3rd largest consumer of electricity and world's 3rd largest renewable energy producer with 40% of energy capacity installed in the year 2022 coming from renewable sources. Ernst & Young's (EY) 2021 Renewable Energy Country Attractiveness Index (RECAI) ranked India 3rd behind USA and China. In FY2023-24, India is planning to issue 50 GW tenders for wind, solar and hybrid projects. India has committed for a goal of 500 GW renewable energy capacity by 2030.In line with this commitment, India's installed renewable energy capacity has been experiencing a steady upward trend. From 94.4 GW in 2021, the capacity has gone up to 119.1 GW in 2023 as of Q4.

<span class="mw-page-title-main">Energy in Nigeria</span> Overview of energy in Nigeria

In 2018, Nigeria's primary energy consumption was about 155 Mtoe. Most of the energy comes from traditional biomass and waste, which accounted for 73.5% of total primary consumption in 2018. The rest is from fossil fuels (26.4%) and hydropower.

Despite its high potential for wind energy generation, wind power in Kenya currently contributes only about 16 percent of the country's total electrical power. However, its share in energy production is increasing. Kenya Vision 2030 aims to generate 2,036 MW of wind power by 2030. To accomplish this goal, Kenya is developing numerous wind power generation centers and continues to rely on the nation's three major wind farms: the Lake Turkana Wind Power Station, the Kipeto Wind Power Station, and the Ngong Hills Wind Farm. While these wind power stations are beneficial to help offset fossil fuel usage and increase overall energy supply reliability in Kenya, project developments have also negatively impacted some indigenous communities and the parts of the environment surrounding the wind farms.

<span class="mw-page-title-main">Renewable energy in Kenya</span>

Most of Kenya's electricity is generated by renewable energy sources. Access to reliable, affordable, and sustainable energy is one of the 17 main goals of the United Nations’ Sustainable Development Goals. Development of the energy sector is also critical to help Kenya achieve the goals in Kenya Vision 2030 to become a newly industrializing, middle-income country. With an installed power capacity of 2,819 MW, Kenya currently generates 826 MW hydroelectric power, 828 geothermal power, 749 MW thermal power, 331 MW wind power, and the rest from solar and biomass sources. Kenya is the largest geothermal energy producer in Africa and also has the largest wind farm on the continent. In March 2011, Kenya opened Africa's first carbon exchange to promote investments in renewable energy projects. Kenya has also been selected as a pilot country under the Scaling-Up Renewable Energy Programmes in Low Income Countries Programme to increase deployment of renewable energy solutions in low-income countries. Despite significant strides in renewable energy development, about a quarter of the Kenyan population still lacks access to electricity, necessitating policy changes to diversify the energy generation mix and promote public-private partnerships for financing renewable energy projects.

<span class="mw-page-title-main">Renewable energy in Mexico</span>

Renewable energy in Mexico contributes to 26 percent of electricity generation in Mexico. As of 2009, electricity generation from renewable energy comes from biomass, hydro power, geothermal, solar power and wind. There is a long term effort established to increase the use of renewable energy sources. The amount of geothermal energy used and harvested, places Mexico as number four in the world.

Tanzania has a wide range of energy resources in abundance, which are not yet fully exploited. These include; wood fuel, other biomass fuels, hydropower, natural gas, coal, wind, geothermal, uranium and solar.

Renewable energy in Chile is classified as Conventional and Non Conventional Renewable Energy (NCRE), and includes biomass, hydro-power, geothermal, wind and solar among other energy sources. Most of the time, when referring to Renewable Energy in Chile, it will be the Non Conventional kind.

Myanmar had a total primary energy supply (TPES) of 16.57 Mtoe in 2013. Electricity consumption was 8.71 TWh. 65% of the primary energy supply consists of biomass energy, used almost exclusively (97%) in the residential sector. Myanmar’s energy consumption per capita is one of the lowest in Southeast Asia due to the low electrification rate and a widespread poverty. An estimated 65% of the population is not connected to the national grid. Energy consumption is growing rapidly, however, with an average annual growth rate of 3.3% from 2000 to 2007.

<span class="mw-page-title-main">Renewable energy in South Africa</span>

Renewable energy in South Africa is energy generated in South Africa from renewable resources, those that naturally replenish themselves—such as sunlight, wind, tides, waves, rain, biomass, and geothermal heat. Renewable energy focuses on four core areas: electricity generation, air and water heating/cooling, transportation, and rural energy services. The energy sector in South Africa is an important component of global energy regimes due to the country's innovation and advances in renewable energy. South Africa's greenhouse gas (GHG) emissions is ranked as moderate and its per capita emission rate is higher than the global average. Energy demand within the country is expected to rise steadily and double by 2025.

Zambia is potentially self-sufficient in sources of electricity, coal, biomass and renewable energy. The only energy source where the country is not self-sufficient is petroleum energy. Many of the sources of energy where the country is self-sufficient are largely unexploited. As of 2017, the country's electricity generating capacity stood at 1,901 megawatts.

As of 2021 there was little renewable energy in Belarus but a lot of potential. 7% of primary energy in Belarus was from renewables in 2019, mostly biofuels. As there is a lot of district heating more renewables could be integrated into that, but this is hindered by fossil fuel subsidies.

References

  1. "Infographic: The Countries Most Reliant on Coal". Statista Infographics. Retrieved 2021-10-20.
  2. "Tracker Map – Global Energy Monitor" . Retrieved 2021-10-20.
  3. Dabla, Nopenyo; Zeyi, Benson; Wanjiru, Elizabeth Njoki; Fichaux, Nicolas; Mabowe, Boiki (August 2021). Renewables readiness assessment: Botswana (PDF). Abu Dhabi, United Arab Emirates: International Renewable Energy Agency (IRENA). ISBN   978-92-9260-352-6 . Retrieved 2021-08-26.
  4. IRENA (August 2021). "Renewables readiness assessment: Botswana". International Renewable Energy Agency (IRENA). Retrieved 2021-08-26. Landing page for report.
  5. Promoting the EEP in the Botswana Renewable Energy Conference 11-12 August 2014, August 21, 2014, in News by KPMG ECO
  6. Programme of meetings and agenda, Journal of the United Nations, September 25, 2015, No. 2015/182