Erythronolide synthase

Last updated
erythronolide synthase
Identifiers
EC no. 2.3.1.94
CAS no. 87683-77-0
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, an erythronolide synthase (also 6-Deoxyerythronolide B Synthase or DEBS) is an enzyme that catalyzes the chemical reaction

Contents

6 malonyl-CoA + propanoyl-CoA 7 CoA + 6-deoxyerythronolide B

Thus, the two substrates of this enzyme are malonyl-CoA and propanoyl-CoA, whereas its two products are CoA and 6-deoxyerythronolide b. This enzyme participates in biosynthesis of 12-, 14- and 16-membered macrolides.

This enzyme belongs to the family of transferases, it has been identified as part of a Type 1 polyketide synthase module. DEBS is found in Saccharopolyspora erythraea and other actinobacteria, and is responsible for the synthesis of the macrolide ring which is the precursor of the antibiotic erythromycin. There have been three categories of polyketide synthases identified to date, type 1, 2 and 3. Type one synthases involve large multidomain proteins containing all the sites necessary for polyketide synthesis. Type two synthases contain active sites distributed among several smaller polypeptides, and type three synthases are large multi-protein complexes containing modules which have a single active site for each and every step of polyketide synthesis. In the case of DEBS, there are three large multi-functional proteins, DEBS 1,2, and 3, that each exist as a dimer of two modules. Each module consists of a minimum of a Ketosynthase (KS), Acyl carrier protein (ACP) site, and acyltransferase (AT), but may also contain a Ketoreductase (KR), Dehydrotase (DH), and Enol Reductase (ER) for additional reduction reactions. The DEBS complex also contains a Loading Domain on module 1 consisting of an acyl carrier protein and an acyltransferase. The terminal Thioesterase acts solely to terminate DEBS polyketide synthesis and cyclize the macrolide ring. [1] [2] [3]

Module components and functions

Essential components

Ketosynthase

The active site of this enzyme has a very broad specificity, which allows for the synthesis of long chains of carbon atoms by joining, via a thioester linkage, small organic acids, such as acetic and malonic acid. [4] The KS domain receives the growing polyketide chain from the upstream module and subsequently catalyzes formation of the C-C bond between this substrate and an ACP-bound extender unit that is selected by the AT domain. [5]

Acyltransferase

Each AT domain has an α-carboxylated CoA thioester (i.e. methylmalonyl-CoA) This specificity prevents non-essential addition of enzymes within the module. The AT captures a nucleophilic β-carboxyacyl-CoA extender unit and transfers it to the phosphopantetheine arm of the ACP domain. [6]

Functions via catalyzing acyl transfer from methylmalonyl-CoA to the ACP domain within the same module via a covalent acyl-AT intermediate. The importance of the AT to the stringent incorporation of specific extender unit in the synthesis of polyketide building blocks makes it vital that the mechanism and structure of these domains be well-elucidated in order to develop efficient strategies for the regiospecific engineering of extender unit incorporation in polyketide biosynthesis. [5]

Acyl Carrier Protein

The ACP is not substrate specific, which allows for the interaction with every domain present within its module. This protein collaborates with the ketosynthase (KS) domain of the same module to catalyze polyketide chain elongation, and subsequently engages with the KS domain of the next module to facilitate forward chain transfer. [7] The ACP first accepts the extender unit from the AT, then collaborates with the KS domain in chain elongation, and finally anchors the newly elongated chain as it undergoes modification at the β-keto position. In order to carry out their function, the ACP domains require post-translational addition of a phosphopantetheine group to a conserved serine residue of the ACP. The terminal sulfhydryl group of the phosphopantetheine is the site of attachment of the growing polyketide chain. [8]

Thioesterase

Located at the C-terminus site of the furthest downstream module. It is terminated in a thioesterase, which releases the mature polyketide (either as the free acid or a cyclized product), via lactonization. [9]

Note: As stated above, the first module of DEBS contains an additional acyltransferase and ACP for initiation of the reactions

Non-essential components

Additional components, may have any one or a combination of the following:

Ketoreductase- Uses NADPH to stereospecifically reduce it to a hydroxyl group [10]

Dehydratase- Catalyzes the removal of the hydroxyl group to create a double bond from organic compounds in the form of water

Enolreductase- Utilizes NADPH to reduce the double bond from the organic compound

Comparison between fatty acid synthesis and polyketide synthesis

Fatty acid synthesis in most prokaryotes occurs by a type II synthase made of many enzymes located in the cytoplasm that can be separated. However, some bacteria such as Mycobacterium smegmatis as well as mammals and yeast use a type I synthase which is a large multifunctional protein similar to the synthase used for polyketide synthesis. This Type I synthase includes discrete domains on which individual reactions are catalyzed.

In both fatty acid synthesis and polyketide synthesis, the intermediates are covalently bound to ACP, or acyl carrier protein. However, in fatty acid synthesis the original molecules are Acyl-CoA or Malonyl-CoA but polyketide synthases can use multiple primers including acetyl-CoA, propionyl-CoA, isobutyryl-CoA, cyclohexanoyl-CoA, 3-amino-5-hydroxybenzoyl-CoA, or cinnamyl-CoA. In both fatty acid synthesis and polyketide synthesis these CoA carriers will be exchanged for ACP before they are incorporated into the growing molecule.

During the elongation steps of fatty acid synthesis, ketosynthase, ketoreductase, dehydratase, and enoylreductase are all used in sequence to create a saturated fatty acid then postsynthetic modification can be done to create an unsaturated or cyclo fatty acid. However, in polyketide synthesis these enzymes can be used in different combinations to create segments of polyketide that are saturated, unsaturated, or have a hydroxyl or carbonyl functional group. There are also enzymes used in both fatty acid synthesis and polyketide synthesis that can make modifications to the molecule after it has been synthesized.

As far as regulating the length of the molecule being synthesized, the specific mechanism by which fatty acid chain length remains unknown but it is expected that ACP-bound fatty acid chains of the correct length act as allosteric inhibitors of the fatty acid synthesis enzymes. In polyketide synthesis, the synthases are composed of modules in which the order of enzymatic reactions is defined by the structure of the protein complex. This means that once the molecule reaches the last reaction of the last module, the polyketide is released from the complex by a thioesterase enzyme. Therefore, regulation of fatty acid chain length is most likely due to allosteric regulation, and regulation of polyketide length is due to a specific enzyme within the polyketide synthase. [11]

Application

Since the late 1980s and early 1990s research on polyketide synthases (PKS), a number of strategies for the genetic modification of such PKS have been developed and elucidated. [12] Such changes in PKS are of particular interest to the pharmaceutical industry as new compounds with antibiotic or other antimicrobial effects are commonly synthesized after changes to the structure of the PKS have been made. Engineering the PKS complex is a much more practical method than synthesizing each product via chemical reactions in vitro due to the cost of reagents and the number of reactions that must take place. Just to exemplify the potential rewards of synthesizing new and effective antimicrobials, in 1995, the worldwide sales of erythromycin and its derivatives exceeded 3.5 billion dollars. [13] This portion will examine the modifications of structure in the DEBS PKS to create new products in regards to erythromycin derivatives as well as completely new polyketides generated by various means of engineering the modular complex.

There are five general methods in which DEBS is regularly modified:

1. Deletion or inactivation of active sites and modules

2. Substitution or addition of active sites and modules

3. Precursor-directed biosynthesis

4. KR replacement for altered stereospecificity

5. Tailoring enzyme modifications

Deletion or inactivation of active sites and modules

The first reported instance of genetic engineering of DEBS came in 1991 from the Katz group [14] who deleted the activity of the KR in module 5 of DEBS which produced a 5-keto macrolide instead of the usual 5-hydroxy macrolide. Since then, deletion or inactivation (often via introduction of point mutations) of many active sites to skip reduction and/or dehydration reactions have been created. Such modifications target the various KR, DH, ER active sites seen on different modules in DEBS. In fact, whole modules can be deleted in order to reduce the chain-length of the polyketides and alter the cycle of reduction/dehydration normally seen. [13]

Substitution or addition of active sites and modules

In one of the first reorganizations of DEBS, a copy of the terminal TE was placed at the end of each module in separate trials, which as predicted resulted in the cleavage and release of the correspondingly shortened products. [14] Following this, ever more complex methods were devised for the addition or substitution of single or multiple active sites to the DEBS complex.

The most common method of engineering DEBS as of 2005 is AT substitution, in which the native AT domain is replaced with an AT specific for a different primer or extender molecule. [12] Under normal circumstances, DEBS has a “loading” or priming AT specific for predominantly propionyl-CoA while all six subsequent AT are specific for the extender molecule, methylmalonyl-CoA. The native AT of DEBS have all been successfully substituted with AT from other modular PKS such as the PKS that produces rapamycin; which replaces the methylmalonyl-CoA specific AT with malonyl-CoA AT and produces a non-methylated erythromycin derivative. [12] This mode of engineering in particular shows the versatility that can be achieved as both the priming molecule and the extender molecule can be changed to produce many new products. In addition to the AT sites, any of the reductive/dehydrating enzyme active sites may be replaced with one or more additional reductive/dehydrating enzyme active sites. For example, in one study, the KR of module 2 of DEBS was replaced by a full set of reductive domains (DH, ER and KR) derived from module 1 of the rapamycin PKS as shown in Figure 2 FIGURE 2


There is at least one report of a whole module substitution, in which module 2 of DEBS was replaced with module 5 of the rapamycin PKS [15] The activities of the two modules is identical, and the same erythromycin precursor (6-deoxyerythronolide B) was produced by the chimeric PKS; however, this shows the possibility of creating PKS with modules from two or even several different PKS in order to produce a multitude of new products. There is one problem with connecting heterologous modules though; there is recent evidence that the amino acid sequence between the ACP domain and the subsequent KS domain of downstream modules plays an important role in the transfer of the growing polyketide from one module to another. [15] These regions have been labeled as “linkers” and although they have no direct catalytic role, any substitution of a linker region that is not structurally compatible with the wild-type PKS may cause poor yields of the expected product.

Precursor-directed biosynthesis

Using a semi-synthetic approach, a diketide intermediate may be added either in vitro or in vivo to a DEBS complex in which the activity of the first KS has been deleted. [14] This means that the diketide will load onto the second KS (in module 2 of DEBS) and be processed all the way to the end as normal. It has been shown that this second KS is fairly nonspecific and a large variety of synthetic diketides can be accepted and subsequently fully elongated and released. However, it has also been seen that this KS is not highly tolerant of structural changes at the C2 and C3 positions, especially if the stereochemistry is altered. [14] To date, this has been the most successful approach to making macrolides with potency equal to or greater than erythromycin. [16]

Ketoreductase replacement to alter stereospecificity

In modular PKS, KR active sites catalyze stereospecific reduction of polyketides. Inversion of an alcohol stereocenter to the opposite stereoisomer is possible via replacement of a wild-type KR with a KR of the opposite specificity. [13] This has rarely been done successfully, and only at the terminal KR of the DEBS complex. It has been theorized that changing the stereospecificity of a KR in an earlier module would also require the concurrent modification of all downstream KS. [12]

Recent studies of the amino acid sequence of the two types of stereospecificity in KR have determined a perfect correlation with these residues and the predicted stereochemical outcome. [12] This is particularly useful in situations where the gene sequence of a modular PKS is known but the final product structure has not yet been elucidated.

Tailoring enzyme modifications

Enzymes that act on the macrolide after it has been released and cyclized by DEBS are called tailoring enzymes. Many such enzymes are involved in the production of erythromycin from the final product of unmodified DEBS, 6-deoxyerythronolide B. Such classes of enzymes include mainly oxidoreductases and glycosyl transferases and are essential for the antibiotic activity of erythromycin. [12] [14] [17]

Thus far, few attempts have been made to modify tailoring pathways, however, the enzymes which participate in such pathways are currently being characterized and are of great interest. Studies are facilitated by their respective genes being located adjacent to the PKS genes, and many are therefore readily identifiable. [17] There is no doubt that in the future, alteration of tailoring enzymes could produce many new and effective antimicrobials.

Structural studies

As of late 2007, 8 structures have been solved for this class of enzymes, with PDB accession codes 1KEZ, 1MO2, 1PZQ, 1PZR, 2HG4, 2JU1, 2JU2, and 2QO3.

Other names of this enzyme class is malonyl-CoA:propanoyl-CoA malonyltransferase (cyclizing). Other names in common use include erythronolide condensing enzyme, and malonyl-CoA:propionyl-CoA malonyltransferase (cyclizing).

Related Research Articles

Polyketides are a class of natural products derived from a precursor molecule consisting of a chain of alternating ketone (or reduced forms of a ketone) and methylene groups: (-CO-CH2-). First studied in the early 20th century, discovery, biosynthesis, and application of polyketides has evolved. It is a large and diverse group of secondary metabolites caused by its complex biosynthesis which resembles that of fatty acid synthesis. Because of this diversity, polyketides can have various medicinal, agricultural, and industrial applications. Many polyketides are medicinal or exhibit acute toxicity. Biotechnology has enabled discovery of more naturally-occurring polyketides and evolution of new polyketides with novel or improved bioactivity.

<span class="mw-page-title-main">Malonyl-CoA</span> Chemical compound

Malonyl-CoA is a coenzyme A derivative of malonic acid.

<span class="mw-page-title-main">Mycolactone</span> Chemical compound

Mycolactone is a polyketide-derived macrolide produced and secreted by a group of very closely related pathogenic Mycobacteria species that have been assigned a variety of names including, M. ulcerans, M. liflandii, M. pseudoshottsii, and some strains of M. marinum. These mycobacteria are collectively referred to as mycolactone-producing mycobacteria or MPM.

Polyketide synthases (PKSs) are a family of multi-domain enzymes or enzyme complexes that produce polyketides, a large class of secondary metabolites, in bacteria, fungi, plants, and a few animal lineages. The biosyntheses of polyketides share striking similarities with fatty acid biosynthesis.

<span class="mw-page-title-main">Beta-ketoacyl-ACP synthase</span> Enzyme

In molecular biology, Beta-ketoacyl-ACP synthase EC 2.3.1.41, is an enzyme involved in fatty acid synthesis. It typically uses malonyl-CoA as a carbon source to elongate ACP-bound acyl species, resulting in the formation of ACP-bound β-ketoacyl species such as acetoacetyl-ACP.

<span class="mw-page-title-main">Oleandomycin</span> Chemical compound

Oleandomycin is a macrolide antibiotic. It is synthesized from strains of Streptomyces antibioticus. It is weaker than erythromycin.

<span class="mw-page-title-main">Biosynthesis of doxorubicin</span>

Doxorubicin (DXR) is a 14-hydroxylated version of daunorubicin, the immediate precursor of DXR in its biosynthetic pathway. Daunorubicin is more abundantly found as a natural product because it is produced by a number of different wild type strains of streptomyces. In contrast, only one known non-wild type species, streptomyces peucetius subspecies caesius ATCC 27952, was initially found to be capable of producing the more widely used doxorubicin. This strain was created by Arcamone et al. in 1969 by mutating a strain producing daunorubicin, but not DXR, at least in detectable quantities. Subsequently, Hutchinson's group showed that under special environmental conditions, or by the introduction of genetic modifications, other strains of streptomyces can produce doxorubicin. His group has also cloned many of the genes required for DXR production, although not all of them have been fully characterized. In 1996, Strohl's group discovered, isolated and characterized dox A, the gene encoding the enzyme that converts daunorubicin into DXR. By 1999, they produced recombinant Dox A, a Cytochrome P450 oxidase, and found that it catalyzes multiple steps in DXR biosynthesis, including steps leading to daunorubicin. This was significant because it became clear that all daunorubicin producing strains have the necessary genes to produce DXR, the much more therapeutically important of the two. Hutchinson's group went on to develop methods to improve the yield of DXR, from the fermentation process used in its commercial production, not only by introducing Dox A encoding plasmids, but also by introducing mutations to deactivate enzymes that shunt DXR precursors to less useful products, for example baumycin-like glycosides. Some triple mutants, that also over-expressed Dox A, were able to double the yield of DXR. This is of more than academic interest because at that time DXR cost about $1.37 million per kg and current production in 1999 was 225 kg per annum. More efficient production techniques have brought the price down to $1.1 million per kg for the non-liposomal formulation. Although DXR can be produced semi-synthetically from daunorubicin, the process involves electrophilic bromination and multiple steps and the yield is poor. Since daunorubicin is produced by fermentation, it would be ideal if the bacteria could complete DXR synthesis more effectively.

In enzymology, a [acyl-carrier-protein] S-malonyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Fatty-acyl-CoA synthase</span>

Fatty-acyl-CoA Synthase, or more commonly known as yeast fatty acid synthase, is an enzyme complex responsible for fatty acid biosynthesis, and is of Type I Fatty Acid Synthesis (FAS). Yeast fatty acid synthase plays a pivotal role in fatty acid synthesis. It is a 2.6 MDa barrel shaped complex and is composed of two, unique multi-functional subunits: alpha and beta. Together, the alpha and beta units are arranged in an α6β6 structure. The catalytic activities of this enzyme complex involves a coordination system of enzymatic reactions between the alpha and beta subunits. The enzyme complex therefore consists of six functional centers for fatty acid synthesis.

Zwittermicin A is an antibiotic that has been identified from the bacterium Bacillus cereus UW85. It is a molecule of interest to agricultural industry because it has the potential to suppress plant disease due to its broad spectrum activity against certain gram positive and gram negative prokaryotic micro-organisms. The molecule is also of interest from a metabolic perspective because it represents a new structural class of antibiotic and suggests a crossover between polyketide and non-ribosomal peptide biosynthetic pathways. Zwittermicin A is linear aminopolyol.

<span class="mw-page-title-main">Pikromycin</span> Chemical compound

Pikromycin was studied by Brokmann and Hekel in 1951 and was the first antibiotic macrolide to be isolated. Pikromycin is synthesized through a type I polyketide synthase system in Streptomyces venezuelae, a species of Gram-positive bacterium in the genus Streptomyces. Pikromycin is derived from narbonolide, a 14-membered ring macrolide. Along with the narbonolide backbone, pikromycin includes a desosamine sugar and a hydroxyl group. Although Pikromycin is not a clinically useful antibiotic, it can be used as a raw material to synthesize antibiotic ketolide compounds such as ertythromycins and new epothilones.

<span class="mw-page-title-main">Apratoxin A</span> Chemical compound

Apratoxin A - is a cyanobacterial secondary metabolite, known as a potent cytotoxic marine natural product. It is a derivative of the Apratoxin family of cytotoxins. The mixed peptide-polyketide natural product comes from a polyketide synthase/non-ribosomal peptide synthase pathway (PKS/NRPS). This cytotoxin is known for inducing G1-phase cell cycle arrest and apoptosis. This natural product's activity has made it a popular target for developing anticancer derivatives.

<span class="mw-page-title-main">Ketoacyl synthase</span> Catalyst for a key step in fatty acid synthesis

Ketoacyl synthases (KSs) catalyze the condensation reaction of acyl-CoA or acyl-acyl ACP with malonyl-CoA to form 3-ketoacyl-CoA or with malonyl-ACP to form 3-ketoacyl-ACP. This reaction is a key step in the fatty acid synthesis cycle, as the resulting acyl chain is two carbon atoms longer than before. KSs exist as individual enzymes, as they do in type II fatty acid synthesis and type II polyketide synthesis, or as domains in large multidomain enzymes, such as type I fatty acid synthases (FASs) and polyketide synthases (PKSs). KSs are divided into five families: KS1, KS2, KS3, KS4, and KS5.

Fostriecin is a type I polyketide synthase (PKS) derived natural product, originally isolated from the soil bacterium Streptomyces pulveraceus. It belongs to a class of natural products which characteristically contain a phosphate ester, an α,β-unsaturated lactam and a conjugated linear diene or triene chain produced by Streptomyces. This class includes structurally related compounds cytostatin and phoslactomycin. Fostriecin is a known potent and selective inhibitor of protein serine/threonine phosphatases, as well as DNA topoisomerase II. Due to its activity against protein phosphatases PP2A and PP4 which play a vital role in cell growth, cell division, and signal transduction, fostriecin was looked into for its antitumor activity in vivo and showed in vitro activity against leukemia, lung cancer, breast cancer, and ovarian cancer. This activity is thought to be due to PP2A's assumed role in regulating apoptosis of cells by activating cytotoxic T-lymphocytes and natural killer cells involved in tumor surveillance, along with human immunodeficiency virus-1 (HIV-1) transcription and replication.

<span class="mw-page-title-main">Borrelidin</span> Chemical compound

Borrelidin is an 18-membered polyketide macrolide derived from several Streptomyces species. First discovered in 1949 from Streptomyces rochei, Borrelidin shows antibacterial activity by acting as an inhibitor of threonyl-tRNA synthetase and features a nitrile moiety, a unique functionality in natural products., Borrelidin also exhibits potent angiogenesis inhibition, which was shown in a rat aorta matrix model. Other studies have been performed to show that low concentrations of borrelidin can suppress growth and induce apoptosis in malignant acute lymphoblastic leukemia cells. Borredlidin's antimalarial activity has also been shown in vitro and in vivo.

<span class="mw-page-title-main">Swinholide</span> Chemical compound

Swinholides are dimeric 42 carbon-ring polyketides that exhibit a 2-fold axis of symmetry. Found mostly in the marine sponge Theonella, swinholides encompass cytotoxic and antifungal activities via disruption of the actin skeleton. Swinholides were first described in 1985 and the structure and stereochemistry were updated in 1989 and 1990, respectively. Thirteen swinholides have been described in the literature, including close structural compounds such as misakinolides/bistheonellides, ankaraholides, and hurgholide A It is suspected that symbiotic microbes that inhabit the sponges rather than the sponges themselves produce swinholides since the highest concentration of swinholides are found in the unicellular bacterial fraction of sponges and not in the sponge fraction or cyanobacteria fraction that also inhabit the sponges.

Tylactone synthase or TYLS is a Type 1 polyketide synthase. TYLS is found in strains of Streptomyces fradiae and responsible for the synthesis of the macrolide ring, tylactone, the precursor of an antibiotic, tylosin. TYLS is composed of five large multi-functional proteins, TylGI-V. Each protein contains either one or two modules. Each module consists of a minimum of a Ketosynthase (KS), an Acyltransferase (AT), and an Acyl carrier protein (ACP) but may also contain a Ketoreductase (KR), Dehydrotase (DH), and Enoyl Reductase (ER) for additional reduction reactions. The domains of TYLS have similar activity domains to those found in other Type I polyketide synthase such as 6-Deoxyerythronolide B synthase (DEBS). The TYLS system also contains a loading module consisting of a ketosynthase‐like decarboxylase domain, an acyltransferase, and acyl carrier protein. The terminal Thioesterase terminates tylactone synthesis by cyclizing the macrolide ring. After the TYLS completes tylactone synthesis, the tylactone molecule is modified by oxidation at C-20 and C-23 and glycosylation of mycaminose, mycinose, and mycarose to produce tylosin.

<span class="mw-page-title-main">Phoslactomycin B</span> Chemical compound

Phoslactomycin (PLM) is a natural product from the isolation of Streptomyces species. This is an inhibitor of the protein serine/threonine phosphatase which is the protein phosphate 2A (PP2A). The PP2A involves the growth factor of the cell such as to induce the formation of mitogen-activated protein interaction and playing a role in cell division and signal transduction. Therefore, PLM is used for the drug that prevents the tumor, cancer, or bacteria. There are nowsaday has 7 kinds of different PLM from PLM A to PLM G which differ the post-synthesis from the biosynthesis of PLM.

Andrimid is an antibiotic natural product that is produced by the marine bacterium Vibrio coralliilyticus. Andrimid is an inhibitor of fatty acid biosynthesis by blocking the carboxyl transfer reaction of acetyl-CoA carboxylase (ACC).

<span class="mw-page-title-main">Pladienolide B</span> Chemical compound

Pladienolide B is a natural product produced by bacterial strain, Streptomyces platensis MER-11107,which is a gram-positive bacteria isolated from soil in Japan. Pladienolide B is a molecule of interest due to its potential anti-cancer properties. Its anti-cancer mode of action includes binding to the SF3B complex in the U2 snRNP in the human spliceosome.

References

  1. Khosla C, Tang Y, Chen AY, Schnarr NA, Cane DE (2007). "Structure and mechanism of the 6-deoxyerythronolide B synthase". Annual Review of Biochemistry. 76: 195–221. doi:10.1146/annurev.biochem.76.053105.093515. PMID   17328673.
  2. Staunton J, Weissman KJ (August 2001). "Polyketide biosynthesis: a millennium review". Natural Product Reports. 18 (4): 380–416. doi:10.1039/a909079g. PMID   11548049.
  3. Katz L (2009). The DEBS paradigm for type I modular polyketide synthases and beyond. Methods in Enzymology. Vol. 459. pp. 113–42. doi:10.1016/S0076-6879(09)04606-0. PMID   19362638.
  4. Hopwood DA (February 2004). "Cracking the polyketide code". PLOS Biology. 2 (2): E35. doi: 10.1371/journal.pbio.0020035 . PMC   340943 . PMID   14966534.
  5. 1 2 Wong FT, Chen AY, Cane DE, Khosla C (January 2010). "Protein-protein recognition between acyltransferases and acyl carrier proteins in multimodular polyketide synthases". Biochemistry. 49 (1): 95–102. doi:10.1021/bi901826g. PMC   2805051 . PMID   19921859.
  6. Chen AY, Schnarr NA, Kim CY, Cane DE, Khosla C (March 2006). "Extender unit and acyl carrier protein specificity of ketosynthase domains of the 6-deoxyerythronolide B synthase". Journal of the American Chemical Society. 128 (9): 3067–74. doi:10.1021/ja058093d. PMC   2532788 . PMID   16506788.
  7. Kapur S, Chen AY, Cane DE, Khosla C (December 2010). "Molecular recognition between ketosynthase and acyl carrier protein domains of the 6-deoxyerythronolide B synthase". Proceedings of the National Academy of Sciences of the United States of America. 107 (51): 22066–71. Bibcode:2010PNAS..10722066K. doi: 10.1073/pnas.1014081107 . PMC   3009775 . PMID   21127271.
  8. Alekseyev VY, Liu CW, Cane DE, Puglisi JD, Khosla C (October 2007). "Solution structure and proposed domain domain recognition interface of an acyl carrier protein domain from a modular polyketide synthase". Protein Science. 16 (10): 2093–107. doi:10.1110/ps.073011407. PMC   2204127 . PMID   17893358.
  9. Tsai SC, Miercke LJ, Krucinski J, Gokhale R, Chen JC, Foster PG, et al. (December 2001). "Crystal structure of the macrocycle-forming thioesterase domain of the erythromycin polyketide synthase: versatility from a unique substrate channel". Proceedings of the National Academy of Sciences of the United States of America. 98 (26): 14808–13. Bibcode:2001PNAS...9814808T. doi: 10.1073/pnas.011399198 . PMC   64940 . PMID   11752428.
  10. Keatinge-Clay AT, Stroud RM (April 2006). "The structure of a ketoreductase determines the organization of the beta-carbon processing enzymes of modular polyketide synthases". Structure. 14 (4): 737–48. doi: 10.1016/j.str.2006.01.009 . PMID   16564177.
  11. Crick D (21 February 2011). Bacterial Fatty Acid and Polyketide Metabolism. MIP 443 Lecture (Report). Fort Collins, CO.: Department of Microbiology, Immunology, Pathology. Colorado State University.
  12. 1 2 3 4 5 6 McDaniel R, Welch M, Hutchinson CR (February 2005). "Genetic approaches to polyketide antibiotics. 1". Chemical Reviews. 105 (2): 543–58. doi:10.1021/cr0301189. PMID   15700956.
  13. 1 2 3 McDaniel R, Thamchaipenet A, Gustafsson C, Fu H, Betlach M, Ashley G (March 1999). "Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel "unnatural" natural products". Proceedings of the National Academy of Sciences of the United States of America. 96 (5): 1846–51. Bibcode:1999PNAS...96.1846M. doi: 10.1073/pnas.96.5.1846 . PMC   26699 . PMID   10051557.
  14. 1 2 3 4 5 Staunton J (June 1998). "Combinatorial biosynthesis of erythromycin and complex polyketides". Current Opinion in Chemical Biology. 2 (3): 339–45. doi:10.1016/s1367-5931(98)80007-0. PMID   9691072.
  15. 1 2 Gokhale RS, Tsuji SY, Cane DE, Khosla C (April 1999). "Dissecting and exploiting intermodular communication in polyketide synthases". Science. 284 (5413): 482–5. Bibcode:1999Sci...284..482G. doi:10.1126/science.284.5413.482. PMID   10205055.
  16. Hutchinson CR, McDaniel R (December 2001). "Combinatorial biosynthesis in microorganisms as a route to new antimicrobial, antitumor and neuroregenerative drugs". Current Opinion in Investigational Drugs. 2 (12): 1681–90. PMID   11892929.
  17. 1 2 Rix U, Fischer C, Remsing LL, Rohr J (October 2002). "Modification of post-PKS tailoring steps through combinatorial biosynthesis". Natural Product Reports. 19 (5): 542–80. doi:10.1039/b103920m. PMID   12430723.

Further reading