Foundation Fieldbus

Last updated

Foundation Fieldbus (styled Foundation Fieldbus) is an all-digital, serial, two-way communications system that serves as the base-level network in a plant or factory automation environment. It is an open architecture, developed and administered by FieldComm Group. [1] [2]

Contents

It is targeted for applications using basic and advanced regulatory control, and for much of the discrete control associated with those functions. Foundation Fieldbus technology is mostly used in process industries, but has recently been implemented in powerplants.

Two related implementations of Foundation Fieldbus have been introduced to meet different needs within the process automation environment. These two implementations use different physical media and communication speeds.

Foundation Fieldbus was originally intended as a replacement for the 4-20 mA standard, and today it coexists alongside other technologies such as Modbus, Profibus, and Industrial Ethernet. Foundation Fieldbus today enjoys a growing installed base in many heavy process applications such as refining, petrochemicals, power generation, and even food and beverage, pharmaceuticals, and nuclear applications. Foundation Fieldbus was developed over a period of many years by the International Society of Automation, or ISA, as SP50. In 1996 the first H1 (31.25 kbit/s) specifications were released. In 1999 the first HSE (High Speed Ethernet) specifications were released. The International Electrotechnical Commission (IEC) standard on field bus, including Foundation Fieldbus, is IEC 61158. Type 1 is Foundation Fieldbus H1, while Type 5 is Foundation Fieldbus HSE.

A typical fieldbus segment consists of the following components.

segment diagram on flickr

An explanation of how Foundation Fieldbus works and how it is used in continuous process control is in the Foundation Fieldbus Primer which may be found at the Fieldbus Inc. website.

See also

Related Research Articles

<span class="mw-page-title-main">Ethernet over twisted pair</span> Ethernet physical layers using twisted-pair cables

Ethernet over twisted-pair technologies use twisted-pair cables for the physical layer of an Ethernet computer network. They are a subset of all Ethernet physical layers.

<span class="mw-page-title-main">CAN bus</span> Standard for serial communication between devices without host computer

A controller area network (CAN) is a vehicle bus standard designed to enable efficient communication primarily between electronic control units (ECUs). Originally developed to reduce the complexity and cost of electrical wiring in automobiles through multiplexing, the CAN bus protocol has since been adopted in various other contexts. This broadcast-based, message-oriented protocol ensures data integrity and prioritization through a process called arbitration, allowing the highest priority device to continue transmitting if multiple devices attempt to send data simultaneously, while others back off. Its reliability is enhanced by differential signaling, which mitigates electrical noise. Common versions of the CAN protocol include CAN 2.0, CAN FD, and CAN XL which vary in their data rate capabilities and maximum data payload sizes.

A distributed control system (DCS) is a computerized control system for a process or plant usually with many control loops, in which autonomous controllers are distributed throughout the system, but there is no central operator supervisory control. This is in contrast to systems that use centralized controllers; either discrete controllers located at a central control room or within a central computer. The DCS concept increases reliability and reduces installation costs by localizing control functions near the process plant, with remote monitoring and supervision.

<span class="mw-page-title-main">Profibus</span> Communications protocol

Profibus is a standard for fieldbus communication in automation technology and was first promoted in 1989 by BMBF and then used by Siemens. It should not be confused with the Profinet standard for Industrial Ethernet. Profibus is openly published as type 3 of IEC 61158/61784-1.

A fieldbus is a member of a family of industrial digital communication networks used for real-time distributed control. Fieldbus profiles are standardized by the International Electrotechnical Commission (IEC) as IEC 61784/61158.

<span class="mw-page-title-main">Industrial Ethernet</span> Use of Ethernet in an industrial environment

Industrial Ethernet (IE) is the use of Ethernet in an industrial environment with protocols that provide determinism and real-time control. Protocols for industrial Ethernet include EtherCAT, EtherNet/IP, PROFINET, POWERLINK, SERCOS III, CC-Link IE, and Modbus TCP. Many industrial Ethernet protocols use a modified media access control (MAC) layer to provide low latency and determinism. Some microprocessors provide industrial Ethernet support.

Fieldbus Foundation was an organization dedicated to a single international, interoperable fieldbus standard. It was established in September 1994 by a merger of WorldFIP North America and the Interoperable Systems Project (ISP). Fieldbus Foundation was a not-for-profit trade consortium that consisted of more than 350 of the world's suppliers and end users of process control and manufacturing automation products. Working together those companies made contributions to the IEC/ISA/FDI and other fieldbus standards development.

Actuator Sensor Interface is an industrial networking solution used in PLC, DCS and PC-based automation systems. It is designed for connecting simple field I/O devices in discrete manufacturing and process applications using a single two-conductor cable.

<span class="mw-page-title-main">Profinet</span> Computer network protocol

Profinet is an industry technical standard for data communication over Industrial Ethernet, designed for collecting data from, and controlling equipment in industrial systems, with a particular strength in delivering data under tight time constraints. The standard is maintained and supported by Profibus and Profinet International, an umbrella organization headquartered in Karlsruhe, Germany.

EtherCAT is an Ethernet-based fieldbus system developed by Beckhoff Automation. The protocol is standardized in IEC 61158 and is suitable for both hard and soft real-time computing requirements in automation technology.

DeviceNet is a network protocol used in the automation industry to interconnect control devices for data exchange. It utilizes the Common Industrial Protocol over a Controller Area Network media layer and defines an application layer to cover a range of device profiles. Typical applications include information exchange, safety devices, and large I/O control networks.

SafetyBUS p is a standard for failsafe fieldbus communication in automation technology. It meets SIL 3 of IEC 61508 and Category 4 of EN 954-1 or Performance Level "e" of the successor standard EN 13849-1.

Foundation Fieldbus H1 is one of the FOUNDATION fieldbus protocol versions. Foundation H1 (31.25 kbit/s) is a bi-directional communications protocol used for communications among field devices and to the control system. It utilizes either twisted pair, or fiber media to communicate between multiple nodes (devices) and the controller. The controller requires only one communication point to communicate with up to 32 nodes, this is a significant improvement over the standard 4–20 mA communication method, which requires a separate connection point for each communication device on the controller system.

EtherNet/IP is an industrial network protocol that adapts the Common Industrial Protocol (CIP) to standard Ethernet. EtherNet/IP is one of the leading industrial protocols in the United States and is widely used in a range of industries including factory, hybrid and process. The EtherNet/IP and CIP technologies are managed by ODVA, Inc., a global trade and standards development organization founded in 1995 with over 300 corporate members.

Sercos III is the third generation of the Sercos interface, a standardized open digital interface for the communication between industrial controls, motion devices, input/output devices (I/O), and Ethernet nodes, such as PCs. Sercos III applies the hard real-time features of the Sercos interface to Ethernet. It is based upon the Ethernet standard. Work began on Sercos III in 2003, with vendors releasing first products supporting it in 2005.

WirelessHART within telecommunications and computing, is a wireless sensor networking technology. It is based on the Highway Addressable Remote Transducer Protocol (HART). Developed as a multi-vendor, interoperable wireless standard, WirelessHART was defined for the requirements of process field device networks.

The Factory Instrumentation Protocol or FIP is a standardized field bus protocol. Its most current definition can be found in the European Standard EN50170.

RAPIEnet was Korea's first Ethernet international standard for real-time data transmission. It is an Ethernet-based industrial networking protocol, developed in-house by LSIS offers real-time transmission and is registered as an international standard.

Ethernet Advanced Physical Layer (Ethernet-APL) describes a physical layer for the Ethernet communication technology which is especially developed for the requirements of the process industries. The development of Ethernet-APL was determined by the need for communication at high speeds and over long distances, the supply of power and communications signals via common single, twisted-pair (2-wire) cable as well as protective measures for the safe use within explosion hazardous areas.

References

  1. "Homepage | FieldComm".
  2. "Fieldbus Foundation - Fieldbus Foundation and HART Communication Foundation Members Approve Formation of FieldComm Group". www.fieldbus.org. Archived from the original on 2014-10-29.
Foundation Fieldbus End User Councils