Halosarcina | |
---|---|
Scientific classification | |
Domain: | |
Kingdom: | |
Phylum: | |
Class: | |
Order: | |
Family: | |
Genus: | Halosarcina |
Binomial name | |
Halosarcina Savage et al. 2008 | |
Species | |
In taxonomy, Halosarcina is a genus of the Halobacteriaceae. [1]
Haladaptatus is a genus of halophilic archaea in the family of Halobacteriaceae. The members of Haladaptatus thrive in environments with salt concentrations approaching saturation
Halalkalicoccus is a genus of the Halobacteriaceae.
In taxonomy, Haloalcalophilium is a genus of the Halobacteriaceae.
Halobaculum is a genus of the Halorubraceae.
Halobiforma is a genus of halophilic archaea of the family Natrialbaceae.
In taxonomy, Halogeometricum is a genus of the Haloferacaceae.
Halomicrobium is a genus of the Haloarculaceae.
Halopiger is a genus of archaeans in the family Natrialbaceae that have high tolerance to salinity.
In taxonomy, Haloplanus is a genus of the Halobacteriaceae.
Halorhabdus is a genus of halophilic archaea in the Haloarculaceae. With an extremely high salinity optimum of 27% NaCl, Halorhabdus has one of the highest reported salinity optima of any living organism.
Halorubrum is a genus in the family Halorubraceae. Halorubrum species are usually halophilic and can be found in waters with high salt concentration such as the Dead Sea or Lake Zabuye.
In taxonomy, Halosimplex is a genus of the Halobacteriaceae.
Haloterrigena is a genus of the Natrialbaceae.
In taxonomy, Halovivax is a genus of the Natrialbaceae. Some species of Halovivax are halophiles and have been found in Iran's Aran-Bidgol hypersaline lake.
In taxonomy, Natrialba is a genus of the Natrialbaceae. The genus consists of many diverse species that can survive extreme environmental niches, especially they are capable to live in the waters saturated or nearly saturated with salt (halophiles). They have certain adaptations to live within their salty environments. For example, their cellular machinery is adapted to high salt concentrations by having charged amino acids on their surfaces, allowing the cell to keep its water molecules around these components. The osmotic pressure and these amino acids help to control the amount of salt within the cell.
Natrinema is a genus of the Natrialbaceae.
In taxonomy, Natronobacterium is a genus of the Natrialbaceae. A member of the domain Archaea, it is both an extreme halophile and alkaliphile, thriving at an optimum saline concentration of 20% and optimum pH of 10.
Natronolimnobius is a genus of the Natrialbaceae.
Natronomonas is a genus of the Halobacteriaceae.
Natronorubrum is a genus in the family Halobacteriaceae.