High-Definition Video Processor

Last updated

Nvidia's High-Definition Digital Processing (HDVP) is an HDTV accelerator on the GeForce 2 GTS. It has a downscaler that supports 1080i and 720p to SDTV resolution. In combination with a tuner chip it creates an accelerated HDTV viewing system that supports time-shifted recording. The Geforce 2 GTS also includes second generation motion compensation, improved from the motion compensation on the GeForce 256. It does not seem to include IDCT acceleration. The HDVP also includes de-interlace acceleration including bob, weave, temporal filter, and advanced de-interlacing. Finally, HDVP supports subpicture compositing, and color enhancements including brightness, hue, contrast, and saturation. [1] nVidia's HDVP would endure through the GeForce 4 series in the Geforce 4 Ti NV25. [2]

Contents

See also

Related Research Articles

<span class="mw-page-title-main">GeForce</span> Brand of GPUs by Nvidia

GeForce is a brand of graphics processing units (GPUs) designed by Nvidia and marketed for the performance market. As of the GeForce 40 series, there have been eighteen iterations of the design. The first GeForce products were discrete GPUs designed for add-on graphics boards, intended for the high-margin PC gaming market, and later diversification of the product line covered all tiers of the PC graphics market, ranging from cost-sensitive GPUs integrated on motherboards, to mainstream add-in retail boards. Most recently, GeForce technology has been introduced into Nvidia's line of embedded application processors, designed for electronic handhelds and mobile handsets.

<span class="mw-page-title-main">GeForce 256</span> GPU by Nvidia

The GeForce 256 is the original release in Nvidia's "GeForce" product line. Announced on August 31, 1999 and released on October 11, 1999, the GeForce 256 improves on its predecessor by increasing the number of fixed pixel pipelines, offloading host geometry calculations to a hardware transform and lighting (T&L) engine, and adding hardware motion compensation for MPEG-2 video. It offered a notably large leap in 3D PC gaming performance and was the first fully Direct3D 7-compliant 3D accelerator.

<span class="mw-page-title-main">GeForce 2 series</span> Series of GPUs by Nvidia

The GeForce 2 series (NV15) is the second generation of Nvidia's GeForce line of graphics processing units (GPUs). Introduced in 2000, it is the successor to the GeForce 256.

<span class="mw-page-title-main">Graphics processing unit</span> Specialized electronic circuit; graphics accelerator

A graphics processing unit (GPU) is a specialized electronic circuit initially designed to accelerate computer graphics and image processing. After their initial design, GPUs were found to be useful for non-graphic calculations involving embarrassingly parallel problems due to their parallel structure. Other non-graphical uses include the training of neural networks and cryptocurrency mining.

<span class="mw-page-title-main">GeForce 6 series</span> Series of GPUs by Nvidia

The GeForce 6 series is the sixth generation of Nvidia's GeForce line of graphics processing units. Launched on April 14, 2004, the GeForce 6 family introduced PureVideo post-processing for video, SLI technology, and Shader Model 3.0 support.

X-Video Motion Compensation (XvMC), is an extension of the X video extension (Xv) for the X Window System. The XvMC API allows video programs to offload portions of the video decoding process to the GPU video-hardware. In theory this process should also reduce bus bandwidth requirements. Currently, the supported portions to be offloaded by XvMC onto the GPU are motion compensation and inverse discrete cosine transform (iDCT) for MPEG-2 video. XvMC also supports offloading decoding of mo comp, iDCT, and VLD for not only MPEG-2 but also MPEG-4 ASP video on VIA Unichrome hardware.

<span class="mw-page-title-main">GeForce 8 series</span> Series of GPUs by Nvidia

The GeForce 8 series is the eighth generation of Nvidia's GeForce line of graphics processing units. The third major GPU architecture developed by Nvidia, Tesla represents the company's first unified shader architecture.

Transform, clipping, and lighting is a term used in computer graphics.

Unified Video Decoder is the name given to AMD's dedicated video decoding ASIC. There are multiple versions implementing a multitude of video codecs, such as H.264 and VC-1.

PureVideo is Nvidia's hardware SIP core that performs video decoding. PureVideo is integrated into some of the Nvidia GPUs, and it supports hardware decoding of multiple video codec standards: MPEG-2, VC-1, H.264, HEVC, and AV1. PureVideo occupies a considerable amount of a GPU's die area and should not be confused with Nvidia NVENC. In addition to video decoding on chip, PureVideo offers features such as edge enhancement, noise reduction, deinterlacing, dynamic contrast enhancement and color enhancement.

Video Acceleration API (VA-API) is an open source application programming interface that allows applications such as VLC media player or GStreamer to use hardware video acceleration capabilities, usually provided by the graphics processing unit (GPU). It is implemented by the free and open-source library libva, combined with a hardware-specific driver, usually provided together with the GPU driver.

X-Video Bitstream Acceleration (XvBA), designed by AMD Graphics for its Radeon GPU and APU, is an arbitrary extension of the X video extension (Xv) for the X Window System on Linux operating-systems. XvBA API allows video programs to offload portions of the video decoding process to the GPU video-hardware. Currently, the portions designed to be offloaded by XvBA onto the GPU are currently motion compensation (MC) and inverse discrete cosine transform (IDCT), and variable-length decoding (VLD) for MPEG-2, MPEG-4 ASP, MPEG-4 AVC (H.264), WMV3, and VC-1 encoded video.

Video Decode and Presentation API for Unix (VDPAU) is a royalty-free application programming interface (API) as well as its implementation as free and open-source library distributed under the MIT License. VDPAU is also supported by Nvidia.

<span class="mw-page-title-main">Distributed Codec Engine</span>

Distributed Codec Engine (DCE) is an API and its implementation as software library ("libdce") by Texas Instruments. The library was released under the Revised BSD License and some additional terms.

<span class="mw-page-title-main">GeForce 700 series</span> Series of GPUs by Nvidia

The GeForce 700 series is a series of graphics processing units developed by Nvidia. While mainly a refresh of the Kepler microarchitecture, some cards use Fermi (GF) and later cards use Maxwell (GM). GeForce 700 series cards were first released in 2013, starting with the release of the GeForce GTX Titan on February 19, 2013, followed by the GeForce GTX 780 on May 23, 2013. The first mobile GeForce 700 series chips were released in April 2013.

The GeForce 800M series is a family of graphics processing units by Nvidia for laptop PCs. It consists of rebrands of mobile versions of the GeForce 700 series and some newer chips that are lower end compared to the rebrands.

<span class="mw-page-title-main">GeForce 900 series</span> Series of GPUs by Nvidia

The GeForce 900 series is a family of graphics processing units developed by Nvidia, succeeding the GeForce 700 series and serving as the high-end introduction to the Maxwell microarchitecture, named after James Clerk Maxwell. They are produced with TSMC's 28 nm process.

nVidia introduced the Video Processing Engine or VPE with the GeForce 4 MX. It is a feature of nVidia's GeForce graphics processor line that offers dedicated hardware to offload parts of the MPEG2 decoding and encoding. The GeForce Go FX 5700 rolled out the VPE 3.0. The VPE later developed into nVidia's PureVideo.

Nvidia NVENC is a feature in Nvidia graphics cards that performs video encoding, offloading this compute-intensive task from the CPU to a dedicated part of the GPU. It was introduced with the Kepler-based GeForce 600 series in March 2012.

References

  1. "Archived copy". Archived from the original on 2005-06-03. Retrieved 2013-07-02.{{cite web}}: CS1 maint: archived copy as title (link)
  2. http://www.activewin.com/reviews/hardware/graphics/nvidia/gf4ti4600/gf3.shtml