List of sequenced algae genomes

Last updated

This list of sequenced algal genomes contains algal species known to have publicly available complete genome sequences that have been assembled, annotated and published. Unassembled genomes are not included, nor are organelle-only sequences. For plant genomes see the list of sequenced plant genomes. For plastid sequences, see the list of sequenced plastomes. For all kingdoms, see the list of sequenced genomes.

Contents

Dinoflagellates (Alveolata)

See also List of sequenced protist genomes.

Organism

strain

TypeRelevanceGenome sizeNumber

of genes

predicted

OrganizationYear of

completion

Assembly

status

Links
Breviolum minutum ( Symbiodinium minutum; clade B1) Dinoflagellate Coral symbiont1.5 Gb47,014 Okinawa Institute of Science and Technology 2013 [1] DraftOIST Marine Genomics [2]
Cladocopium goreaui ( Symbiodinium goreaui; clade C, type C1) Dinoflagellate Coral symbiont1.19 Gb35,913Reef Future Genomics (ReFuGe) 2020 / University of Queensland 2018 [3] DraftReFuGe 2020 [4]
Cladocopium C92 strain Y103 ( Symbiodinium sp. clade C; putative type C92) Dinoflagellate Foraminiferan symbiontUnknown (assembly size 0.70 Gb)65,832 Okinawa Institute of Science and Technology 2018 [5] DraftOIST Marine Genomics [2]
Fugacium kawagutii CS156=CCMP2468 ( Symbiodinium kawagutii; clade F1) Dinoflagellate Coral symbiont?1.07 Gb26,609Reef Future Genomics (ReFuGe) 2020 / University of Queensland 2018 [3] DraftReFuGe 2020 [4]
Fugacium kawagutii CCMP2468 ( Symbiodinium kawagutii; clade F1) Dinoflagellate Coral symbiont?1.18 Gb36,850 University of Connecticut / Xiamen University 2015 [6] DraftS. kawagutii genome project [7]
Polarella glacialis CCMP1383 Dinoflagellate Psychrophile, Antarctic3.02 Gb (diploid), 1.48 Gbp (haploid)58,232 University of Queensland 2020 [8] DraftUQ eSpace [9]
Polarella glacialis CCMP2088 Dinoflagellate Psychrophile, Arctic2.65 Gb (diploid), 1.30 Gbp (haploid)51,713 University of Queensland 2020 [8] DraftUQ eSpace [9]
Symbiodinium microadriaticum (clade A) Dinoflagellate Coral symbiont1.1 Gb49,109 King Abdullah University of Science and Technology 2016 [10] DraftReef Genomics [11]
Symbiodinium A3 strain Y106 ( Symbiodinium sp. clade A3) Dinoflagellate symbiontUnknown (assembly size 0.77 Gb)69,018 Okinawa Institute of Science and Technology 2018 [5] DraftOIST Marine Genomics [2]

Cryptomonad

Organism

strain

TypeRelevanceGenome sizeNumber

of genes

predicted

OrganizationYear of

completion

Assembly

status

Links
Cryptophyceae sp. CCMP2293Nanoflagellate Nucleomorph, Psychrophile 534.5 Mb33,051 Joint Genome Institute 2016 [12] JGI Genome Portal [13]
Guillardia theta Eukaryote Endosymbiosis 87.2 Mb24, 840 Dalhousie University 2012 [14] The Greenhouse [15]

Glaucophyte

Organism

strain

TypeRelevanceGenome

size

Number

of genes

predicted

OrganizationYear of

completion

Assembly

status

Links
Cyanophora

paradoxa

Model

Organism

70.2 Mb3,900 Rutgers University 2012 [16] Draft v1The Greenhouse [15]

Cyanophora Genome Project [17]

Cyanophora

paradoxa

Model

Organism

99.94 Mb25,831 Rutgers University 2019 [18] Draft v2Cyanophora Genome Project [19]

Green algae

Organism

strain

TypeRelevanceGenome

size

Number

of genes

predicted

OrganizationYear of

completion

Assembly

status

Links
Asterochloris sp. Cgr/DA1pho Photobiont 55.8 Mb10,025 Duke University 2011 [20] JGI Genome Portal [13]
Auxenochlorella protothecoides Biofuels22.9 Mb7,039 Tsinghua University 2014 [21] The Greenhouse [15]
Bathycoccus prasinos Comparative analysis15.1 Mb7,900 Joint Genome Institute 2012 [22] JGI Genome Portal [13]
Chlamydomonas reinhardtii CC-503

cw92 mt+

Model Organism111.1 Mb17,741 Joint Genome Institute 2017 [23] Phytozome [24]

The Greenhouse [15]

Chlorella sorokiniana str. 1228Biofuels61.4 Mb Los Alamos National Lab 2018 [25] The Greenhouse [15]
Chlorella sorokiniana UTEX 1230Biofuels58.5 Mb Los Alamos National Lab 2018 [26] The Greenhouse [15]
Chlorella sorokiniana DOE1412Biofuels57.8 Mb Los Alamos National Lab 2018 [27] The Greenhouse [15]
Chlorella variabilis NC64ABiofuels46.2 Mb9,7912010 [28] The Greenhouse [15]
Chlorella vulgaris Biofuels37.3 Mb National Renewable

Energy Laboratory

2015 [29] The Greenhouse [15]
Coccomyxa subellipsoidea

sp. C-169

Biofuels48.8 Mb9839 Joint Genome Institute 2012 [30] Phytozome [24]

The Greenhouse [15]

Dunaliella salina

CCAP19/18

Halophile

Biofuels

Beta-carotene and glycerol production

343.7 Mb16,697 Joint Genome Institute 2017 [31] Phytozome [24]
Eudorina sp.Multicellular alga,

model organism

~180 Mb University of Tokyo 2018 [32]
Gonium pectorale 148.81 Mb Kansas State University 2016 [33]
Micromonas commoda NOUM17 (RCC288)Marine phytoplankton 21.0 Mb10,262 Monterey Bay Aquarium Research Institute 2013 [34] [35] JGI Genome Portal [13]
Micromonas

pusilla CCMP-1545

Marine

phytoplankton

21.9 Mb10,575Micromonas

Genome

Consortium

2009 [36] Phytozome [24]

The Greenhouse [15]

Micromonas

pusilla

RCC299/NOUM17

Marine

phytoplankton

20.9 Mb10,056 Joint Genome

Institute

2009 [36] Phytozome [24]

The

Greenhouse [15]

Monoraphidium

neglectum

Biofuels69.7 Mb16,755 Bielefeld

University

2013 [37] The

Greenhouse [15]

Ostreococcus

lucimarinus

CCE9901

Small genome13.2 Mb7,603 Joint Genome Institute 2007 [38] Phytozome [24]
Ostreococcus

tauri OTH95

Small genome12.9 Mb7,699 CNRS 2014 [39] The Greenhouse [15]
Ostreococcus sp.

RCC809

Small genome13.3 Mb7,492 Joint Genome

Institute

2009 [40] JGI [41]
Picochlorum

soloecismus

DOE101

Biofuels15.2 Mb7,844 Los Alamos

National Lab

2017 [42] The Greenhouse [15]
Picochlorum

SENEW3

Biofuels13.5 Mb7,367 Rutgers University 2014 [43] The Greenhouse [15]
Scenedesmus

obliquus DOE0152Z

Biofuels210.3 Mb Brooklyn College 2017 [44] The Greenhouse [15]
Symbiochloris reticulata (Metagenome) Photobiont 58.6 Mb12,720 Joint Genome Institute 2018 [45] JGI Genome Portal [13]
Tetraselmis sp. Biofuels228 Mb Los Alamos

National Lab

2018 [15] The Greenhouse [15]
Pedinomonas minor (Chlorophyta)55 Mb New Phytologist 2022 [46]
Volvox carteri Multicellular alga,

model organism

131.2 Mb14,247 Joint Genome

Institute

2010 [47] Phytozome [24]

The

Greenhouse [15]

Yamagishiella unicoccaMulticellular alga,

model organism

~140 Mb University of Tokyo 2018 [32]

Haptophyte

Organism

strain

TypeRelevanceGenome

size

Number

of genes

predicted

OrganizationYear of

completion

Assembly

status

Links
Chrysochromulina

parva

Biofuels65.8 Mb Los Alamos National Laboratory 2018 [48] The Greenhouse [15]
Chrysochromulina tobinii CCMP291Model organism, Biofuels59.1 Mb16,765 University of Washington 2015 [49] The Greenhouse [15]
Emiliania huxleyi Coccolithophore Alkenone production, Algal blooms167.7 Mb38,554 Joint Genome Institute 2013 [50] The Greenhouse [15]
Pavlovales sp. CCMP2436 Psychrophile 165.4 Mb26,034 Joint Genome Institute 2016 [51] JGI Genome Portal [13]

Heterokonts/Stramenopiles

Organism

strain

TypeRelevanceGenome

size

Number

of genes

predicted

OrganizationYear of

completion

Assembly

status

Links
Aureococcus

anophagefferens

Harmful Algal

Bloom

50.1 Mb11,522 Joint Genome Institute 2011 [52] The Greenhouse [15]
Ectocarpus siliculosus Brown algaeModel organism198.5 Mb16,269 Genoscope 2012 [53] The Greenhouse [15]
Fragilariopsis cylindrus CCMP1102 Psychrophile 61.1 Mb21,066 University of East Anglia, Joint Genome Institute 2017 [54] JGI Genome Portal [13]
Nannochloropsis

gaditana

Biofuels28.5 Mb10,486 University of Padua 2014 [55] The Greenhouse [15]
Nannochloropsis

oceanica

Biofuels31.5 Mb Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology2016 [56] The Greenhouse [15]
Nannochloropsis Salina CCMP1766Biofuels24.4 Mb Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology2016 [57] The Greenhouse [15]
Ochromonadaceae sp. CCMP2298 Psychrophile 61.1 Mb20,195 Joint Genome Institute 2016 [58] JGI Genome Portal [13]
Pelagophyceae sp. CCMP2097 Psychrophile 85.2 Mb19,402 Joint Genome Institute 2016 [59] JGI Genome Portal [13]
Phaeodactylum tricornutum Model organism27.5 Mb10,408 Diatom Consortium 2008 [60] The Greenhouse [15]
Pseudo-nitzschia multiseries CLN-47218.7 Mb19,703 Joint Genome Institute 2011 [61] JGI Genome Portal [13]
Saccharina japonica Brown algaeCommercial crop543.4 Mb Chinese Academy of Sciences, Beijing Institutes of Life Science2015 [62] The Greenhouse [15]
Thalassiosira oceanica CCMP 1005Model organism92.2 Mb34,642 The Future Ocean 2012 [63] The Greenhouse [15]
Thalassiosira pseudonana model organism32.4 Mb11,673 Diatom Consortium 2009 [64] The Greenhouse [15]

Red algae (Rhodophyte)

Organism

strain

TypeRelevanceGenome

size

Number

of genes

predicted

OrganizationYear of

completion

Assembly

status

Links
Chondrus crispus Carrageenan production, model organism105 Mb9,606 Genoscope 2013The Greenhouse [15]
Cyanidioschyzon

merolae 10D

Model

organism

16.5 Mb4,775 National Institute

of Genetics, Japan

2007 [65] The Greenhouse [15]
Galdieria sulphuraria Extremophile 12.1 Mb The University of York 2016 [66] The Greenhouse [15]
Gracilariopsis chorda Mesophile 92.1 Mb10,806 Sungkyunkwan University 2018 [67]
Porphyridium purpureum Mesophile 19.7 Mb8,355 Rutgers University 2013 [68]
Porphyra umbilicalis Mariculture 87.6 Mb13,360 University of Maine 2017 [69] Phytozome [24]
Pyropia yezoensis Mariculture 43.5 Mb10,327 National Research Institute of Fisheries Science 2013 [70]

Rhizaria

Organism

strain

TypeRelevanceGenome

size

Number

of genes

predicted

OrganizationYear of

completion

Assembly

status

Links
Bigelowiella natans Model organism94. Mb21,708 Dalhousie University 2012 [14] The Greenhouse [15]

Related Research Articles

<span class="mw-page-title-main">Human genome</span> Complete set of nucleic acid sequences for humans

The human genome is a complete set of nucleic acid sequences for humans, encoded as DNA within the 23 chromosome pairs in cell nuclei and in a small DNA molecule found within individual mitochondria. These are usually treated separately as the nuclear genome and the mitochondrial genome. Human genomes include both protein-coding DNA sequences and various types of DNA that does not encode proteins. The latter is a diverse category that includes DNA coding for non-translated RNA, such as that for ribosomal RNA, transfer RNA, ribozymes, small nuclear RNAs, and several types of regulatory RNAs. It also includes promoters and their associated gene-regulatory elements, DNA playing structural and replicatory roles, such as scaffolding regions, telomeres, centromeres, and origins of replication, plus large numbers of transposable elements, inserted viral DNA, non-functional pseudogenes and simple, highly repetitive sequences. Introns make up a large percentage of non-coding DNA. Some of this non-coding DNA is non-functional junk DNA, such as pseudogenes, but there is no firm consensus on the total amount of junk DNA.

<span class="mw-page-title-main">Nucleomorph</span>

Nucleomorphs are small, vestigial eukaryotic nuclei found between the inner and outer pairs of membranes in certain plastids. They are thought to be vestiges of primitive red and green algal nuclei that were engulfed by a larger eukaryote. Because the nucleomorph lies between two sets of membranes, nucleomorphs support the endosymbiotic theory and are evidence that the plastids containing them are complex plastids. Having two sets of membranes indicate that the plastid, a prokaryote, was engulfed by a eukaryote, an alga, which was then engulfed by another eukaryote, the host cell, making the plastid an example of secondary endosymbiosis.

<span class="mw-page-title-main">Human Genome Project</span> Human genome sequencing programme

The Human Genome Project (HGP) was an international scientific research project with the goal of determining the base pairs that make up human DNA, and of identifying, mapping and sequencing all of the genes of the human genome from both a physical and a functional standpoint. It started in 1990 and was completed in 2003. It remains the world's largest collaborative biological project. Planning for the project started after it was adopted in 1984 by the US government, and it officially launched in 1990. It was declared complete on April 14, 2003, and included about 92% of the genome. Level "complete genome" was achieved in May 2021, with a remaining only 0.3% bases covered by potential issues. The final gapless assembly was finished in January 2022.

<span class="mw-page-title-main">David J. Lipman</span> American biologist

David J. Lipman is an American biologist who from 1989 to 2017 was the director of the National Center for Biotechnology Information (NCBI) at the National Institutes of Health. NCBI is the home of GenBank, the U.S. node of the International Sequence Database Consortium, and PubMed, one of the most heavily used sites in the world for the search and retrieval of biomedical information. Lipman is one of the original authors of the BLAST sequence alignment program, and a respected figure in bioinformatics. In 2017, he left NCBI and became Chief Science Officer at Impossible Foods.

<i>Symbiodinium</i> Genus of dinoflagellates (algae)

Symbiodinium is a genus of dinoflagellates that encompasses the largest and most prevalent group of endosymbiotic dinoflagellates known. These unicellular microalgae commonly reside in the endoderm of tropical cnidarians such as corals, sea anemones, and jellyfish, where the products of their photosynthetic processing are exchanged in the host for inorganic molecules. They are also harbored by various species of demosponges, flatworms, mollusks such as the giant clams, foraminifera (soritids), and some ciliates. Generally, these dinoflagellates enter the host cell through phagocytosis, persist as intracellular symbionts, reproduce, and disperse to the environment. The exception is in most mollusks, where these symbionts are intercellular. Cnidarians that are associated with Symbiodinium occur mostly in warm oligotrophic (nutrient-poor), marine environments where they are often the dominant constituents of benthic communities. These dinoflagellates are therefore among the most abundant eukaryotic microbes found in coral reef ecosystems.

<span class="mw-page-title-main">Archaeal Richmond Mine acidophilic nanoorganisms</span> Incredibly small, very unique extremophile Archaea species found deep in an acidic mine

Archaeal Richmond Mine acidophilic nanoorganisms (ARMAN) were first discovered in an extremely acidic mine located in northern California (Richmond Mine at Iron Mountain) by Brett Baker in Jill Banfield's laboratory at the University of California Berkeley. These novel groups of archaea named ARMAN-1, ARMAN-2 (Candidatus Micrarchaeum acidiphilum ARMAN-2), and ARMAN-3 were missed by previous PCR-based surveys of the mine community because the ARMANs have several mismatches with commonly used PCR primers for 16S rRNA genes. Baker et al. detected them in a later study using shotgun sequencing of the community. The three groups were originally thought to represent three unique lineages deeply branched within the Euryarchaeota, a subgroup of the Archaea. However, based on a more complete archaeal genomic tree, they were assigned to a new superphylum named DPANN. The ARMAN groups now comprise deeply divergent phyla named Micrarchaeota and Parvarchaeota. Their 16S rRNA genes differ by as much as 17% between the three groups. Prior to their discovery, all of the Archaea shown to be associated with Iron Mountain belonged to the order Thermoplasmatales (e.g., Ferroplasma acidarmanus).

<span class="mw-page-title-main">SPEG</span> Protein-coding gene in the species Homo sapiens

Striated muscle preferentially expressed protein kinase, in the human is encoded by the SPEG gene, a member of the myosin light chain kinase protein family. SPEG is involved in the development of the muscle cell cytoskeleton, and the expression of this gene has important roles in the development of skeletal muscles, and their maintenance and function. Mutations are associated with centronuclear myopathies a group of congenital disorders where the cell nuclei are abnormally centrally placed.

The Reference Sequence (RefSeq) database is an open access, annotated and curated collection of publicly available nucleotide sequences and their protein products. RefSeq was introduced in 2000. This database is built by National Center for Biotechnology Information (NCBI), and, unlike GenBank, provides only a single record for each natural biological molecule for major organisms ranging from viruses to bacteria to eukaryotes.

<span class="mw-page-title-main">REEP5</span> Protein-coding gene in the species Homo sapiens

Receptor expression-enhancing protein 5 is a protein that in humans is encoded by the REEP5 gene. Receptor Expression Enhancing Protein is a protein encoded for in Humans by the REEP5 gene.

<span class="mw-page-title-main">Reference genome</span> Digital nucleic acid sequence database

A reference genome is a digital nucleic acid sequence database, assembled by scientists as a representative example of the set of genes in one idealized individual organism of a species. As they are assembled from the sequencing of DNA from a number of individual donors, reference genomes do not accurately represent the set of genes of any single individual organism. Instead, a reference provides a haploid mosaic of different DNA sequences from each donor. For example, one of the most recent human reference genomes, assembly GRCh38/hg38, is derived from >60 genomic clone libraries. There are reference genomes for multiple species of viruses, bacteria, fungus, plants, and animals. Reference genomes are typically used as a guide on which new genomes are built, enabling them to be assembled much more quickly and cheaply than the initial Human Genome Project. Reference genomes can be accessed online at several locations, using dedicated browsers such as Ensembl or UCSC Genome Browser.

<i>Ostreococcus tauri</i> Species of alga

Ostreococcus tauri is a unicellular species of marine green alga about 0.8 micrometres (μm) in diameter, the smallest free-living (non-symbiotic) eukaryote yet described. It has a very simple ultrastructure, and a compact genome.

TIGRFAMs is a database of protein families designed to support manual and automated genome annotation. Each entry includes a multiple sequence alignment and hidden Markov model (HMM) built from the alignment. Sequences that score above the defined cutoffs of a given TIGRFAMs HMM are assigned to that protein family and may be assigned the corresponding annotations. Most models describe protein families found in Bacteria and Archaea.

<span class="mw-page-title-main">C16orf82</span> Protein-coding gene in the species Homo sapiens

C16orf82 is a protein that, in humans, is encoded by the C16orf82 gene. C16orf82 encodes a 2285 nucleotide mRNA transcript which is translated into a 154 amino acid protein using a non-AUG (CUG) start codon. The gene has been shown to be largely expressed in the testis, tibial nerve, and the pituitary gland, although expression has been seen throughout a majority of tissue types. The function of C16orf82 is not fully understood by the scientific community.

Propionispira raffinosivorans is a motile, obligate anaerobic, gram-negative bacteria. It was originally isolated from spoiled beer and believed to have some causative effect in beer spoilage. Since then, it has been taxonomically reclassified and proven to play a role in anaerobic beer spoilage, because of its production of acids, such as acetic and propionic acid, during fermentation

Endozoicomonas gorgoniicola is a Gram-negative and facultative anaerobic bacterium from the genus of Endozoicomonas. Individual cells are motile and rod-shaped. Bacteria in this genus are symbionts of coral. E. gorgoniicola live specifically with soft coral and were originally isolated from a species of Plexaura, an octocoral, off the coast of Bimini in the Bahamas. The presence of this bacterium in a coral microbiome is associated with coral health.

<span class="mw-page-title-main">THAP3</span> Protein in Humans

THAP domain-containing protein 3 (THAP3) is a protein that, in Homo sapiens (humans), is encoded by the THAP3 gene. The THAP3 protein is as known as MGC33488, LOC90326, and THAP domain-containing, apoptosis associated protein 3. This protein contains the Thanatos-associated protein (THAP) domain and a host-cell factor 1C binding motif. These domains allow THAP3 to influence a variety of processes, including transcription and neuronal development. THAP3 is ubiquitously expressed in H. sapiens, though expression is highest in the kidneys.

References

  1. Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, et al. (2013). "Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure". Current Biology. 25 (15): 1399–1408. doi: 10.1016/j.cub.2013.05.062 . PMID   23850284.
  2. 1 2 3 "OIST Marine Genomics". marinegenomics.oist.jp. Retrieved 2018-08-22.
  3. 1 2 Liu H, Stephens TG, González-Pech RA, Beltran VH, Lapeyre B, Bongaerts P, et al. (2018). "Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis". Communications Biology. 1: 95. doi:10.1038/s42003-018-0098-3. PMC   6123633 . PMID   30271976.
  4. 1 2 "ReFuGe 2020 Data Site". refuge2020.reefgenomics.org. Retrieved 2018-08-22.
  5. 1 2 Shoguchi E, Beedessee G, Tada I, Hisata K, Kawashima T, Takeuchi T, et al. (2018). "Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes". BMC Genomics. 19 (1): 458. doi: 10.1186/s12864-018-4857-9 . PMC   6001144 . PMID   29898658.
  6. Lin S, Cheng S, Song B, Zhong X, Lin X, Li W, et al. (2015). "The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis". Science. 350 (6261): 691–4. Bibcode:2015Sci...350..691L. doi: 10.1126/science.aad0408 . PMID   26542574.
  7. "S. kawagutii data site". web.malab.cn/symka_new. Retrieved 2018-08-22.
  8. 1 2 Stephens TG, González-Pech RA, Cheng Y, Mohamed AR, Burt DW, Bhattacharya D, et al. (2020). "Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions". BMC Biology. 18 (1): 56. doi: 10.1186/s12915-020-00782-8 . PMC   7245778 . PMID   32448240.
  9. 1 2 Stephens, Timothy; Ragan, Mark; Bhattacharya, Debashish; Chan, Cheong Xin (2020). "Polarella data site". doi:10.14264/uql.2020.222. S2CID   216542238.{{cite journal}}: Cite journal requires |journal= (help)
  10. Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, et al. (2016). "Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle". Scientific Reports. 6: 39734. Bibcode:2016NatSR...639734A. doi:10.1038/srep39734. PMC   5177918 . PMID   28004835.
  11. "Reef Genomics Data Site". smic.reefgenomics.org. Retrieved 2018-08-22.
  12. "Info - Cryptophyceae sp. CCMP2293 v1.0". genome.jgi.doe.gov. Retrieved 2018-07-31.
  13. 1 2 3 4 5 6 7 8 9 10 "Algae". genome.jgi.doe.gov. Retrieved 2018-07-31.
  14. 1 2 Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, et al. (December 2012). "Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs". Nature. 492 (7427): 59–65. Bibcode:2012Natur.492...59C. doi: 10.1038/nature11681 . PMID   23201678.
  15. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 "Home | Greenhouse". greenhouse.lanl.gov. Retrieved 2018-07-11.
  16. Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber AP, et al. (February 2012). "Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants". Science. 335 (6070): 843–7. Bibcode:2012Sci...335..843P. doi:10.1126/science.1213561. PMID   22344442. S2CID   17190180.
  17. "Cyanophora Genome Project". cyanophora.rutgers.edu. Retrieved 2018-07-12.
  18. Price DC, Goodenough UW, Roth R, Lee JH, Kariyawasam T, Mutwil M, et al. (August 2019). "Analysis of an improved Cyanophora paradoxa genome assembly". DNA Research. 26 (4): 289–299. doi: 10.1093/dnares/dsz009 . PMC   6704402 . PMID   31098614.
  19. "Cyanophora Genome v2 Project". cyanophora.rutgers.edu/cyanophora_v2018. Retrieved 2019-08-01.
  20. "Info - Asterochloris sp. Cgr/DA1pho v2.0". genome.jgi.doe.gov. Retrieved 2018-07-31.
  21. Gao C, Wang Y, Shen Y, Yan D, He X, Dai J, Wu Q (July 2014). "Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes". BMC Genomics. 15 (1): 582. doi: 10.1186/1471-2164-15-582 . PMC   4111847 . PMID   25012212.
  22. Moreau H, Verhelst B, Couloux A, Derelle E, Rombauts S, Grimsley N, et al. (August 2012). "Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage". Genome Biology. 13 (8): R74. doi: 10.1186/gb-2012-13-8-r74 . PMC   3491373 . PMID   22925495.
  23. "Phytozome". phytozome.jgi.doe.gov. Retrieved 2018-07-12.
  24. 1 2 3 4 5 6 7 8 "Phytozome". phytozome.jgi.doe.gov. Retrieved 2018-07-12.
  25. "CSI_1228 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
  26. "ASM313072v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
  27. "ASM311615v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
  28. Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, et al. (September 2010). "The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex". The Plant Cell. 22 (9): 2943–55. doi:10.1105/tpc.110.076406. PMC   2965543 . PMID   20852019.
  29. "ASM102112v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
  30. "Coccomyxa subellipsoidae v2.0 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
  31. "Dsal_v1.0 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
  32. 1 2 Hamaji, Takashi; Kawai-Toyooka, Hiroko; Uchimura, Haruka; Suzuki, Masahiro; Noguchi, Hideki; Minakuchi, Yohei; Toyoda, Atsushi; Fujiyama, Asao; Miyagishima, Shin-ya (2018-03-08). "Anisogamy evolved with a reduced sex-determining region in volvocine green algae". Communications Biology. 1 (1): 17. doi:10.1038/s42003-018-0019-5. ISSN   2399-3642. PMC   6123790 . PMID   30271904.
  33. "ASM158458v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2022-04-06.
  34. "Info - Micromonas commoda NOUM17 (RCC 299)". genome.jgi.doe.gov. Retrieved 2018-07-31.
  35. Worden AZ, Lee JH, Mock T, Rouzé P, Simmons MP, Aerts AL, et al. (April 2009). "Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas". Science. 324 (5924): 268–72. Bibcode:2009Sci...324..268W. doi:10.1126/science.1167222. PMID   19359590. S2CID   206516961.
  36. 1 2 Worden AZ, Lee JH, Mock T, Rouzé P, Simmons MP, Aerts AL, et al. (April 2009). "Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas". Science. 324 (5924): 268–72. Bibcode:2009Sci...324..268W. doi:10.1126/science.1167222. PMID   19359590. S2CID   206516961.
  37. Bogen C, Al-Dilaimi A, Albersmeier A, Wichmann J, Grundmann M, Rupp O, et al. (December 2013). "Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production". BMC Genomics. 14: 926. doi: 10.1186/1471-2164-14-926 . PMC   3890519 . PMID   24373495.
  38. Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, et al. (May 2007). "The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation". Proceedings of the National Academy of Sciences of the United States of America. 104 (18): 7705–10. Bibcode:2007PNAS..104.7705P. doi: 10.1073/pnas.0611046104 . PMC   1863510 . PMID   17460045.
  39. Blanc-Mathieu R, Verhelst B, Derelle E, Rombauts S, Bouget FY, Carré I, et al. (December 2014). "An improved genome of the model marine alga Ostreococcus tauri unfolds by assessing Illumina de novo assemblies". BMC Genomics. 15 (1): 1103. doi: 10.1186/1471-2164-15-1103 . PMC   4378021 . PMID   25494611.
  40. "Info - Ostreococcus sp. RCC809". genome.jgi.doe.gov. Retrieved 2018-07-16.
  41. "Home - Ostreococcus sp. RCC809". genome.jgi.doe.gov. Retrieved 2018-07-26.
  42. Gonzalez-Esquer CR, Twary SN, Hovde BT, Starkenburg SR (January 2018). "Picochlorum soloecismus". Genome Announcements. 6 (4): e01498–17. doi:10.1128/genomeA.01498-17. PMC   5786678 . PMID   29371352.
  43. Foflonker F, Price DC, Qiu H, Palenik B, Wang S, Bhattacharya D (February 2015). "Genome of the halotolerant green alga Picochlorum sp. reveals strategies for thriving under fluctuating environmental conditions". Environmental Microbiology. 17 (2): 412–26. doi:10.1111/1462-2920.12541. PMID   24965277. S2CID   23615707.
  44. Starkenburg SR, Polle JE, Hovde B, Daligault HE, Davenport KW, Huang A, et al. (August 2017). "Scenedesmus obliquus Strain DOE0152z". Genome Announcements. 5 (32). doi:10.1128/genomeA.00617-17. PMC   5552973 . PMID   28798164.
  45. "Info - Symbiochloris reticulata Africa extracted metagenome v1.0". genome.jgi.doe.gov. Retrieved 2018-07-31.
  46. Xu, Yan; Wang, Hongli; Sahu, Sunil Kumar; Li, Linzhou; Liang, Hongping; Günther, Gerd; Wong, Gane Ka-Shu; Melkonian, Barbara; Melkonian, Michael; Liu, Huan; Wang, Sibo (August 2022). "Chromosome-level genome of Pedinomonas minor (Chlorophyta) unveils adaptations to abiotic stress in a rapidly fluctuating environment". New Phytologist. 235 (4): 1409–1425. doi:10.1111/nph.18220. ISSN   0028-646X. PMID   35560066. S2CID   248778022.
  47. Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, et al. (July 2010). "Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri". Science. 329 (5988): 223–6. Bibcode:2010Sci...329..223P. doi:10.1126/science.1188800. PMC   2993248 . PMID   20616280.
  48. "ASM288719v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-11.
  49. "Ctobinv2 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-27.
  50. Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, et al. (July 2013). "Pan genome of the phytoplankton Emiliania underpins its global distribution". Nature. 499 (7457): 209–13. Bibcode:2013Natur.499..209.. doi: 10.1038/nature12221 . hdl: 1854/LU-4120924 . PMID   23760476.
  51. "Info - Pavlovales sp. CCMP2436 v1.0". genome.jgi.doe.gov. Retrieved 2018-07-31.
  52. Gobler CJ, Berry DL, Dyhrman ST, Wilhelm SW, Salamov A, Lobanov AV, et al. (March 2011). "Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics". Proceedings of the National Academy of Sciences of the United States of America. 108 (11): 4352–7. Bibcode:2011PNAS..108.4352G. doi: 10.1073/pnas.1016106108 . PMC   3060233 . PMID   21368207.
  53. "ASM31002v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-11.
  54. Mock T, Otillar RP, Strauss J, McMullan M, Paajanen P, Schmutz J, et al. (January 2017). "Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus". Nature. 541 (7638): 536–540. Bibcode:2017Natur.541..536M. doi: 10.1038/nature20803 . hdl: 10754/622831 . PMID   28092920.
  55. Corteggiani Carpinelli E, Telatin A, Vitulo N, Forcato C, D'Angelo M, Schiavon R, et al. (February 2014). "Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion". Molecular Plant. 7 (2): 323–35. doi: 10.1093/mp/sst120 . PMID   23966634.
  56. "ASM187094v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-26.
  57. "ASM161424v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-26.
  58. "Info - Ochromonadaceae sp. CCMP2298 v1.0". genome.jgi.doe.gov. Retrieved 2018-08-02.
  59. "Info - Pelagophyceae sp. CCMP2097 v1.0". genome.jgi.doe.gov. Retrieved 2018-08-02.
  60. "Phaeodactylum tricornutum (ID 418) - Genome - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-26.
  61. "Info - Pseudo-nitzschia multiseries CLN-47". genome.jgi.doe.gov. Retrieved 2018-08-02.
  62. "SJ6.1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-27.
  63. Jiang Z, Liu S, Wu Y, Jiang X, Zhou K (2017). "China's mammal diversity (2nd edition)". Biodiversity Science. 25 (8): 886–895. doi: 10.17520/biods.2017098 .
  64. "ASM14940v2 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-27.
  65. Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, et al. (July 2007). "A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae". BMC Biology. 5: 28. doi: 10.1186/1741-7007-5-28 . PMC   1955436 . PMID   17623057.
  66. "ASM170485v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-30.
  67. Lee J, Yang EC, Graf L, Yang JH, Qiu H, Zelzion U, et al. (2018-04-23). "Analysis of the draft genome of the red seaweed Gracilariopsis chorda provides insights into genome size evolution in Rhodophyta". Molecular Biology and Evolution. 35 (8): 1869–1886. doi: 10.1093/molbev/msy081 . PMID   29688518.
  68. Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, et al. (2013-06-17). "Genome of the red alga Porphyridium purpureum". Nature Communications. 4 (1): 1941. Bibcode:2013NatCo...4.1941B. doi:10.1038/ncomms2931. PMC   3709513 . PMID   23770768.
  69. Brawley SH, Blouin NA, Ficko-Blean E, Wheeler GL, Lohr M, Goodson HV, et al. (August 2017). "Porphyra umbilicalis (Bangiophyceae, Rhodophyta)". Proceedings of the National Academy of Sciences of the United States of America. 114 (31): E6361–E6370. Bibcode:2017PNAS..114E6361B. doi: 10.1073/pnas.1703088114 . PMC   5547612 . PMID   28716924.
  70. Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, et al. (2013-03-11). "The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis)". PLOS ONE. 8 (3): e57122. Bibcode:2013PLoSO...857122N. doi: 10.1371/journal.pone.0057122 . PMC   3594237 . PMID   23536760.